首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
为提高番茄植株营养胁迫定量分析模型的精度,探究偏振检测在植物单叶尺度进行无损检测的优势,利用自行研制的偏振反射光谱系统检测不同生长期温室番茄缺素叶片偏振反射特征。对影响番茄单叶偏振反射的主要因素:方位角、入射天顶角、探测天顶角、光源偏振片起偏角度、探测器偏振片起偏角度进行了讨论,通过正交试验的极差分析获取光谱仪各测量角度参数的优水平,并通过实验进一步验证,最终分析得到偏振光谱系统检测番茄缺素叶片的角度组合及主次排序为:入射天顶角60°、光源起偏角度0°、探测器起偏角度45°、探测天顶角45°、方位角180°,在此基础上对不同生长期的缺氮、缺磷、缺钾叶片以及不同缺素程度的叶片进行分析比较,结果显示偏振反射比随番茄叶片的生长周期呈现正相关关系,缺素和营养过量均能导致偏振反射比的下降,偏振反射比在结果期和采收期的降幅较为明显。对于偏振反射光谱在植物单叶尺度营养快速检测的深入研究具有一定的理论和实践意义。  相似文献   

2.
基于高光谱成像技术的番茄叶片灰霉病早期检测研究   总被引:1,自引:0,他引:1  
提出了独立软模式法(SIMCA)的番茄叶片灰霉病特征波段图像的提取,并通过多元线性回归法(MLR)提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息的技术路线。利用680~740 nm波段的方差图像和建模能力参数提取的特征波段,并作为输入变量进行MLR分析,在0.5准确率阈值下,准确率均大于99%,说明特征波段可以实现番茄叶片灰霉病的检测,并利用MLR回归系数提取波段融合图像,通过最小距离法获取番茄灰霉病患病信息,结果表明所提出的方法具有很好的预测能力,为番茄灰霉病的早期检测提供了一种新方法,且大大降低了高光谱图像的数据处理时间。  相似文献   

3.
基于高光谱成像技术的番茄茎秆灰霉病早期诊断研究   总被引:3,自引:0,他引:3  
共采集了112个番茄茎秆高光谱数据(光谱范围400~1 030 nm),结合图像处理和化学计量学方法建立了番茄茎秆灰霉病早期诊断模型。应用偏最小二乘法(PLS)模型的隐含变量载荷分布选取了七个特征波长(EW),并建立了番茄茎秆灰霉病早期诊断的最小二乘支持向量机(LS-SVM)模型。结果表明,经过变量标准化(SNV)及多元散射校正(MSC)预处理所建立的EW-LS-SVM模型获得了满意的判别效果,且优于全波段的PLS模型。说明高光谱成像技术进行番茄茎秆灰霉病的早期诊断是可行的,为番茄病害早期诊断和预警提供了新的方法。  相似文献   

4.
丁香叶片叶绿素含量偏振高光谱数学模型反演研究   总被引:4,自引:0,他引:4  
在测量叶绿素含量的同时,使用二向反射光度计、USB2000高光潜仪和偏振装置,定量测量与计算丁香叶片高光谱偏振信息,并建立偏振信息-叶绿素含量回归模型.结果表明:当0°偏振时,叶绿素的含量与其偏振反射比的回归模型为y=4.506 4e-0.0568x,复相关指数R2=0.895 8;90°偏振时,叶绿素的含量与其偏振反射比的回归模型为y=145.79X-0.2041,复相关指数为R2=0.479 8;50°入射角时,叶绿素的含量与其偏振度的回归模型为y=7 206.7X6-20 160X5+22 547X4-12 788X5+3 822.4X2-553.72X+30.429,复相关指数为R2=0.646 4;对以上模型进行F检验,发现模型中的偏振信息和叶绿素含量之间存在显著的函数火系,为植被遥感监测和应用提供了理论基础.  相似文献   

5.
提出了基于连续投影算法(successive projections algorithm,SPA)、载荷系数法(x-loading weights,x-LW)和格拉姆-施密特正交(gram-schmidt orthogonalization,GSO)提取特征波长的高光谱成像技术检测番茄叶片早疫病的方法。首先获取380~1 023 nm波段范围内70个健康和70个染病番茄叶片的高光谱图像信息,然后提取健康和染病叶片感兴趣区域(region of interest, ROI)的光谱反射率值,建立番茄叶片早疫病的最小二乘-支持向量机(least squares-support vector machine,LS-SVM)鉴别模型,建模集和预测集的鉴别率都是100%。再通过SPA 、x-LW和GSO提取特征波长(effective wavelengths,EW),并建立EW-LS-SVM和特征波长-线性判别分析(ew-linear discriminant analysis,EW-LDA)鉴别模型。结果显示,每个模型的鉴别效果都很好,EW-LS-SVM模型中预测集的鉴别率都达到了100%,EW-LDA模型中预测集的鉴别率分别是100%, 100%和97.83%。基于SPA, x-LW和GSO所建模型的输入变量分别是4个(492,550,633和680nm),3个(631,719和747 nm)和2个(533和657 nm),较少的特征波长便于实时检测仪器的开发。结果表明,高光谱成像技术检测番茄叶片早疫病是可行的,SPA,x-LW和GSO都是非常有效的特征波长提取方法。  相似文献   

6.
叶片茸毛对叶片反射光谱及高光谱植被指数的影响研究   总被引:1,自引:0,他引:1  
很多高光谱植被指数被用于对植被的生化物质含量进行非破坏性的估计与反演。由于这些指数都是利用不同波段的反射率计算而得到的,因而对叶片反射具有很大影响的茸毛等叶表结构对这些植被指数的反演精度的影响不容忽视。本研究发现去茸毛处理使得在400~1 000nm范围的的光谱反射都有所下降,但在各个波段的变化并不均匀。通过对比39个现有的高光谱植被指数在经过去茸毛处理前后的变化,发现一些只单独利用可见光或者近红外波段的高光谱植被指数,如CTR1:R695/R420,D740/D720,WBI:R900/R970,R860/(R550×R708)以及红边指数(REP)比大多数既使用可见光又使用近红外波段的高光谱植被指数受茸毛变化影响小,它们对茸毛的低敏感性可以使其在进行植被生化物质反演时更具有普适性。  相似文献   

7.
对灰霉病胁迫下番茄叶片中叶绿素含量(SPAD)的高光谱图像信息进行了研究。首先获取380~1 030 nm波段范围内健康和染病番茄叶片的高光谱图像,然后基于ENVI软件处理平台提取高光谱图像中感兴趣区域的光谱信息,经平滑(Smoothing)、标准化(Normalize)等预处理后,建立了基于Normalize预处理的偏最小二乘回归(PLSR)和主成分回归(PCR)模型。再基于PLSR获得的4个变量建立反向传播神经网络(BPNN)和最小二乘-支持向量机(LS-SVM)模型。4个模型中,LS-SVM的预测效果最好,其决定系数R2为0.901 8,预测集均方根误差RMSEP为2.599 2。结果表明,基于健康和染病番茄叶片的高光谱图像响应特性检测叶绿素含量(SPAD)是可行的。  相似文献   

8.
高光谱图像信息的柑橘叶片光合色素含量分析技术研究   总被引:2,自引:0,他引:2  
暗箱环境下采集柑橘叶片高光谱图像,采用阈值法提取整叶有效光谱信息区域的平均光谱,比对分析了柑橘叶片光谱信息不同预处理方法和光谱PLS、BPNN和LS-SVM预测模型对叶绿素a、叶绿素b和类胡萝卜素等光合色素含量的预测精度。结果显示,采用MSC对原始光谱进行预处理和LS-SVM建模对叶绿素a含量的预测效果较好,Rp达0.898 3,RMSEP为0.140 4;采用SNV光谱预处理和LS-SVM模型对叶绿素b含量的预测其Rp为0.912 3,RMSEP为0.042 6;采用MAS预处理和PLS模型对于类胡萝卜素含量预测的Rp和RMSEP分别为0.712 8和0.062 4。结果表明:采用高光谱图像信息可较好地进行柑橘叶片叶绿素a,叶绿素b和类胡萝卜素等光合色素含量的预测,为进一步研究柑橘叶片光合色素含量与组分构成的非损伤实时检测提供了依据。  相似文献   

9.
高光谱技术诊断马铃薯叶片晚疫病的研究   总被引:2,自引:0,他引:2  
鉴于晚疫病可对马铃薯造成毁灭性灾害,对受晚疫病胁迫的马铃薯叶片进行了高光谱图像特征研究。旨在探索马铃薯叶片的高光谱图象特征与晚疫病害程度的关联,以实现准确、快速、无损的晚疫病诊断。采用60片马铃薯叶片,对其中48片采用离体方式接种晚疫病菌,所剩12片作为对照,染病前后连续观测7天,得到染病和健康样本。健康和染病样本按照染病时间和染病程度不同采用374~1 018 nm波段范围的可成像高光谱仪分别采样,基于ENVI软件处理平台提取图像中感兴趣区的光谱信息,并采用移动平均平滑、导数处理、光谱变换、基线变换等预处理方法提高信噪比,建立了最小二乘支持向量机(LS-SVM)的识别模型。9个模型中,基于原始光谱(不预处理)和光谱变换预处理后的数据所建立的模型预测效果最好,识别率均达到了94.87%。表明基于高光谱成像技术可以实现晚疫病胁迫下马铃薯病害程度的有效区分。  相似文献   

10.
番茄植株在生长过程中受病虫害的侵染,将导致番茄减产和种植户的经济效益降低,该研究用高光谱技术结合化学计量学方法,实现了番茄叶片斑潜蝇虫害的快速识别。搭建了简易的高光谱成像系统,包括光源单元、高光谱图像采集单元和数据处理单元,用该系统获取番茄叶片的高光谱图像,对高光谱图像进行校准,并从每一幅图像中提取光谱信息。分别采用了光谱角匹配(SAM)分析方法和光谱红边参数判别分析(DA)方法识别番茄叶片斑潜蝇虫害。在SAM分析中,对高光谱数据进行了归一化预处理,以消除多余信息,增加样品之间的差异。比较了以不同番茄叶片样品的反射光谱作为测试光谱时,虫害识别效果的差异,当以受到斑潜蝇侵染的番茄叶片的平均反射光谱作为测试光谱时,虫害识别的正确率较高,达到96.5%。在光谱红边参数判别分析中,从光谱数据中提取了红边位置、红边振幅、最小振幅、红边面积、红谷位置和红边振幅/最小振幅6组红边信息,利用判别分析方法建立番茄叶片斑潜蝇虫害的判别模型,比较了距离判别、Fisher判别、Bayes判别分析方法的判别效果,使用距离判别分析建模的判别正确率最低,判别正确率为88.0%,使用Fisher判别分析建模的效果最佳,判别正确率为96.0%。研究结果表明,采用高光谱技术识别番茄叶片斑潜蝇虫害具有可行性。  相似文献   

11.
正确评价土壤盐渍化对地区农业生产与生态环境具有重要意义。土壤线对土壤盐渍化程度具有一定的指示作用,但在不同角度下观察获得的土壤光谱特征会发生变化,土壤线的参数值也会随之变化。依据以实验室测定的盐渍化土壤多角度偏振高光谱反射率,分析并确定土壤盐渍化程度与土壤线参数之间的关系,初步探求在偏振反射条件下土壤线最佳的获取方式。结果表明:(1)土壤光谱反射率随波段的增加逐步缓慢上升,趋于平缓。随着盐渍化程度的增强,土壤的光谱反射率先逐步降低至某一临界值后又逐步升高;(2)土壤的盐渍化程度与土壤线的斜率和截距均呈线性相关,随着盐渍化程度的增强,土壤线的斜率变小,截距变大;(3)探测天顶角影响偏振状态与土壤线参数的关系,当探测天顶角一定时,偏振状态与土壤线参数之间具有规律性。探测天顶角在0°-50°之间,随角度的变大,土壤线斜率变大,截距变小;(4)偏振状态影响土壤线参数与土壤盐渍化程度的相关性程度,初步确立偏振角度为90°,探测天顶角为25°状态下,建立的土壤盐渍化程度与土壤线参数关系模型较优。为定量反演土壤盐渍化程度提供新的途径。可以用于土壤的盐渍化程度评价。  相似文献   

12.
基于竞争性自适应重加权算法(CARS)和相关系数法(CA)特征波长选择方法,提出了利用可见-近红外高光谱成像技术检测番茄叶片灰霉病的方法。首先获取380~1 023 nm波段范围内80个染病和80个健康番茄叶片的高光谱图像,然后提取染病和健康叶片感兴趣区域(ROI)的光谱反射率值,作为番茄叶片灰霉病鉴别模型的输入来建立支持向量机(SVM)鉴别模型,训练集和验证集的鉴别率都是100%。研究进一步通过CARS和CA提取特征波长,分别得到5个(554, 694, 696, 738和880 nm)和4个(527, 555, 571和633 nm)特征波长,然后分别建立CARS-SVM和CA-SVM鉴别模型。结果显示,CARS-SVM模型中训练集和验证集的鉴别率都是100%,CA-SVM模型中训练集和验证集的鉴别率分别是91.59%和92.45%。以上结果说明了从可见-近红外高光谱图像中提取的光谱反射率值用于检测番茄叶片的灰霉病是可行的。  相似文献   

13.
提出了应用光谱和纹理特征的高光谱成像技术早期检测番茄叶片早疫病的方法。利用高光谱图像采集系统获取380~1 030 nm范围内71个染病和88个健康番茄叶片的高光谱图像,同时采用主成分分析法(PCA)对高光谱图像进行处理。选取染病和健康叶片感兴趣区域(region of interest, ROI)的光谱反射率值,同时分别从前8个主成分的每幅主成分图像的ROI中提取对比度(Contrast)、 相关性(Correlation)、 熵(Entropy)和同质性(Homogeneity)4个灰度共生矩阵的纹理特征值,再通过PCA和连续投影算法(SPA)结合最小二乘支持向量机(LS-SVM)构建番茄叶片早疫病的早期鉴别模型。建立的6个模型中,采用光谱反射率值的LS-SVM模型对番茄叶片早疫病的识别率最高,达到100%。结果表明,应用高光谱成像技术检测番茄叶片早疫病是可行的。  相似文献   

14.
高光谱成像的柑橘病虫害叶片识别方法   总被引:1,自引:0,他引:1  
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。  相似文献   

15.
提出了利用可见/近红外高光谱成像技术检测高温障碍胁迫下番茄叶片色差的方法。首先采集380~1 023 nm波段范围内60个高温障碍胁迫和60个健康番茄叶片的高光谱图像,同时获取全部叶片的色差值(L*, a*b*),然后提取所有样本的高光谱图像中感兴趣区域(region of interest, ROI)的光谱反射率值。基于不同预处理方法建立偏最小二乘(partial least squares, PLS)预测模型,再利用连续投影算法(successive projections algorithm, SPA)提取特征波长并建立SPA-PLS预测模型。最后分别基于全波段和特征波段建立偏最小二乘-判别分析(partial least squares-discriminant analysis, PLS-DA)模型。结果显示,全波段中基于原始光谱信息建立的模型效果最好,3个色差值的预测集决定系数(determination coefficient, R2)分别是0.818,0.109和0.896;基于特征波长建立的模型预测集R2分别是0.591,0.244和0.673;所有模型预测集的总体识别率均大于77.50%。结果表明,可见/近红外高光谱成像技术检测番茄叶片色差值(L*和b*)和识别高温障碍样本是可行的。  相似文献   

16.
可溶性固形物含量(SSC)是决定鲜桃风味和品质的重要成分。高光谱影像的特征提取为无损检测可溶性固形物含量提供了数据基础和方法路径。先前的研究表明,基于多光谱、荧光谱、近红外光谱、电子鼻的水果内部品质评估取得较好的结果。但是,由于缺少多特征融合,从而限制了水果品质的精准估测。为此,提出了一种基于堆栈自动编码器-粒子群优化支持向量回归(SAE-PSO-SVR)模型预测鲜桃可溶性固形物含量。首先,利用高光谱影像提取光谱信息、空间信息及空-谱融合信息。其次,设置普适性堆栈自动编码器(SAE)提取光谱信息、空间信息及空-谱融合信息的深层特征。最后,将深层特征作为粒子群优化支持向量回归(PSO-SVR)模型的输入数据进行鲜桃可溶性固形物含量的预测。其中,对于光谱信息作为输入的SAE模型,设计了453-300-200-100-40, 453-350-250-150-50, 453-350-250-100-60的三个隐含层结构。对于空间信息作为输入的SAE模型,设计了894-700-500-300-50, 894-650-350-200-80, 894-800-700-500-100的三个隐含层结构。对于融合信息作为输入的SAE模型,设计了1347-800-400-200-40, 1347-750-550-400-100, 1347-700-500-360-150的三个隐含层结构。实验结果表明,对于输入数据分别为光谱信息、空间信息及融合信息的SAE模型,结构为453-300-200-100-40, 894-800-700-500-100和1347-750-550-400-100的模型效果较好,而且基于融合信息的模型预测精度明显优于基于光谱信息或者图像信息的模型。为了验证模型的普适性,利用结构为1347-750-550-400-100的SAE模型提取融合信息的深层特征估测不同品种鲜桃的可溶性固形物含量并进行可视化。结果表明,基于结构为1237-650-310-130的SAE-PSO-SVR模型预测效果最好(R2=0.873 3, RMSE=0.645 1)。因此,所提出的SAE-PSO-SVR模型提高了鲜桃可溶性固形物含量的估计精度,为鲜桃的其他成分检测提供了技术支撑。  相似文献   

17.
基于高光谱的番茄叶片过氧化物酶活力测定   总被引:4,自引:0,他引:4  
用高光谱图像技术结合化学计量学方法,实现了番茄叶片中过氧化物酶(POD)活性的快速检测。利用高光谱图像的光谱特征建立预测模型步骤为:采集高光谱图像数据、获取光谱曲线、光谱数据预处理、提取特征波段、建立POD酶活性预测模型。与预处理方法(SG,SNV,MSC,1-Der和2-Der)相比,DOSC预处理对POD酶活性预测效果最好。研究表明:以443,464,413,410,401,402,426和926 nm这八个特征波段的光谱数据建立的DOSC-SPA-PLS模型对POD酶活性预测结果为Rp=0.935 3,RMSEP=37.80 U·g-1。这说明高光谱图像技术测定番茄叶片POD活性具有可行性,且预测结果令人满意,这为抗氧化酶活性和番茄植株生长状况的动态检测提供了新的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号