首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We report the results of a study on the influence of organic salts on the induction of single strand breaks (SSBs) and double strand breaks (DSBs) in DNA by electrons of 1 eV to 60 keV. Plasmid DNA films are prepared with two different concentrations of organic salts, by varying the amount of the TE buffer (Tris-HCl and EDTA) in the films with ratio of 1:1 and 6:1 Tris ions to DNA nucleotide. The films are bombarded with electrons of 1, 10, 100, and 60?000 eV under vacuum. The damage to the 3197 base-pair plasmid is analyzed ex vacuo by agarose gel electrophoresis. The highest yields are reached at 100 eV and the lowest ones at 60 keV. The ratios of SSB to DSB are surprisingly low at 10 eV (~4.3) at both salt concentrations, and comparable to the ratios measured with 100 eV electrons. At all characteristic electron energies, the yields of SSB and DSB are found to be higher for the DNA having the lowest salt concentration. However, the organic salts are more efficient at protecting DNA against the damage induced by 1 and 10 eV electrons. DNA damage and protection by organic ions are discussed in terms of mechanisms operative at each electron energy. It is suggested that these ions create additional electric fields within the groove of DNA, which modify the resonance parameter of 1 and 10 eV electrons, namely, by reducing the electron capture cross-section of basic DNA units and the lifetime of corresponding transient anions. An interstrand electron transfer mechanism is proposed to explain the low ratios for the yields of SSB to those of DSB produced by 10 eV electrons.  相似文献   

2.
Nonthermal secondary electrons with initial kinetic energies below 100 eV are an abundant transient species created in irradiated cells and thermalize within picoseconds through successive multiple energy loss events. Here we show that below 15 eV such low-energy electrons induce single (SSB) and double (DSB) strand breaks in plasmid DNA exclusively via formation and decay of molecular resonances involving DNA components (base, sugar, hydration water, etc.). Furthermore, the strand break quantum yields (per incident electron) due to resonances occur with intensities similar to those that appear between 25 and 100 eV electron energy, where nonresonant mechanisms related to excitation/ionizations/dissociations are shown to dominate the yields, although with some contribution from multiple scattering electron energy loss events. We also present the first measurements of the electron energy dependence of multiple double strand breaks (MDSB) induced in DNA by electrons with energies below 100 eV. Unlike the SSB and DSB yields, which remain relatively constant above 25 eV, the MDSB yields show a strong monotonic increase above 30 eV, however with intensities at least 1 order of magnitude smaller than the combined SSB and DSB yields. The observation of MDSB above 30 eV is attributed to strand break clusters (nano-tracks) involving multiple successive interactions of one single electron at sites that are distant in primary sequence along the DNA double strand, but are in close contact; such regions exist in supercoiled DNA (as well as cellular DNA) where the double helix crosses itself or is in close proximity to another part of the same DNA molecule.  相似文献   

3.
Five-monolayer (5 ML) plasmid DNA films deposited on glass and tantalum substrates were exposed to Al Kα X-rays of 1.5 keV under gaseous nitrous oxide (N2O) at atmospheric pressure and temperature. Whereas the damage yields for DNA deposited on glass are due to soft X-rays, those arising from DNA on tantalum are due to both the interaction of low energy photoelectrons from the metal and X-rays. Then, the differences in the yields of damage on glass and tantalum substrates, essentially arises from interaction of essentially low-energy electrons (LEEs) with DNA molecules and the surrounding atmosphere. The G-values (i.e., the number of moles of product per Joule of energy absorbed) for DNA strand breaks induced by LEEs (GLEE) and the lower limit of G-values for soft X-ray photons (GXL) were calculated and the results compared to those from previous studies under atmospheric conditions and other ambient gases, such as N2 and O2. Under N2O, the G-values for loss of supercoiled DNA are 103±15 nmol/J for X-rays, and 737±110 nmol/J for LEEs. Compared to corresponding values in an O2 atmosphere, the effectiveness of X-rays to damage DNA in N2O is less, but the G value for LEEs in N2O is more than twice the corresponding value for an oxygenated environment. This result indicates a higher effectiveness for LEEs relative to N2 and O2 environments in causing SSB and DSB in an N2O environment. Thus, the previously observed radiosensitization of cells by N2O may not be only due to OH radicals but also to the reaction of LEE with N2O molecules near DNA. The previous experiments with N2 and O2 and the present one demonstrate the possibility to investigate damage induced by LEEs to biomolecules under various types of surrounding atmospheres.  相似文献   

4.
DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7–2.3×10−16 cm2. The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.  相似文献   

5.
To study the molecular mechanism of high mutation frequency induced by high-energy-pulse-electron (HEPE) beam radiation, the effects of HEPE radiation on yeast cells, plasma membrane, plasmid DNA, and protein activity were investigated by means of cell counting, gel electrophoresis, AO/EB double fluorescent staining, etc. The results showed that the viability of yeast cells declined statistically with increase of absorbed doses. The half lethal dose (LD50) was 134 Gy. HEPE beam radiation had little influence on the function of plasma membrane and protein, while it could induce much DNA damage of single strand breaks (SSB) and double strand breaks (DSB) that were required for gene mutation. The G-value for DSB formation of HEPE beam radiation in aqueous solution was 5.7 times higher than that caused by 60Co gamma rays. HEPE can be a new effective method for induced mutation breeding and deserves further research in the future.  相似文献   

6.
Low energy electrons (LEEs) are produced in copious amounts by the primary radiation used in radiation therapy. The damage caused to the DNA by these secondary electrons in the energy range 5-22 eV has been studied to understand their possible role in radiation induced damage. Electrons are irradiated on dried films of plasmid DNA (pQE30) and analysed using agarose gel electrophoresis. Single strand breaks (SSBs) induced by LEE to supercoiled plasmid DNA show resonance structures at 7, 12, and 15 eV for low doses and 6, 10, and ~18 eV at saturation doses. The present measurements have an overall agreement with the literature that LEEs resonantly induce SSBs in DNA. Resonant peaks in the SSBs induced by LEEs at 7, 12, and 15 eV with the lowest employed dose in the current study are somewhat different from those reported earlier by two groups. The observed differences are perhaps related to the irradiation dose, conditions and the nature of DNA employed, which is further elaborated.  相似文献   

7.
Recent experimental and theoretical investigations on resonant electron scattering off DNA and DNA fragments using low-energy electrons (LEEs), to propose the mechanism for single strand breaks (SSBs) and double strand breaks (DSBs), have received considerable attention. It is our purpose here to understand theoretically the comprehensive route to SSB in a selected DNA fragment, namely, 2'-deoxycytidine-3'-monophosphate (3'-dCMPH), induced by LEE (0-3 eV) scattering using the local complex potential based time-dependent wave packet (LCP-TDWP) approach. To the best of our knowledge, there is no time-dependent quantum mechanical study that has been reported in the literature for this DNA fragment to date. Initial results obtained from our calculation in the gas phase provide a good agreement with experimental observation and show the plausibility of SSB at 0.75 eV, which is very close to the highest SSB yield reported from the experimental measurement (0.8 eV) on plasmid DNA in the condensed phase.  相似文献   

8.
Effect of electron correlation on single strand breaks (SSBs) induced by low energy electron (LEE) has been investigated in a fragment excised from a DNA, viz., 2'-deoxycytidine-3'-monophosphate [3'-dCMPH] molecule in gas phase at DFT-B3LYP/6-31+G(d) accuracy level and using local complex potential based time dependent wave packet (LCP-TDWP) approach. The results obtained, in conjunction with our earlier investigation, show the possibility of SSB at very low energy (0.15 eV) where the LEE transfers from π? to σ? resonance state which resembles a S(N)2 type mechanism. In addition, for the first time, an indication of quantum mechanical tunneling in strand breaking is seen from the highest anionic bound vibrational state (χ(5)), which may have a substantial role during DNA damage.  相似文献   

9.
The induction of single-strand breaks (SSB) by two quantum processes in DNA is well established. We now report that biphotonic processes result in double-strand breaks (DSB) as well. pUC19 and bacteriophage M13 RF DNA were irradiated using an excimer laser (248 nm) at intensities of 10(7), 10(9), 10(10) and 10(11) W/m2 and doses up to 30 kJ/m2. The proportion of DNA as supercoil, open circular, linear and short fragments was determined by gel electrophoresis. Linear molecules were noted at fluences where supercoiled DNA was still present. The random occurrence of independent SSB in proximity to each other on opposite strands (producing linear DNA) implies introduction of numerous SSB per molecule in the sample. If so, supercoiled DNA that has sustained no SSB should not be observed. A model accounting for the amounts of supercoiled, open circular, linear and shorter fragments of DNA due to SSB, DSB and Scissions (opposition of two independently occurring SSB producing an apparent DSB) was developed, our experimental data and those of others were fit to the model, and quantum yields determined for SSB and DSB formation at each intensity. Results showed that high intensity laser radiation caused an increase in the quantum yields for both SSB and DSB formation. The mechanism of DSB formation is unknown, and may be due to simultaneous cleavage of both strands in one biphotonic event or the biased introduction of an SSB opposite a preexisting SSB, requiring two biphotonic events.  相似文献   

10.
Abstract— The fluoroquinolone(FQ) antibiotics photosensitize human skin to solar UV radiation and are reported to photosensitize tumor formation in mouse skin. As tumor initiation will not occur without genotoxic insult, we examined the potential of ciprofloxacin, lomefloxacin, fle-roxacin, BAYy3118 (a recently developed monofluori-nated quinolone) and nalidixic acid to photosensitize DNA damage in V79 hamster fibroblasts in vitro. Cells were exposed to 37.5 kj/m2 UVA (320-400 nm; glass filtered Sylvania psoralen + UVA (PUVA) tubes; calibrated Waldmann radiometer) at 4AoC in the presence of FQ and immediately afterwards embedded in agarose, lysed and placed in an electrophoretic field at pH 12. Under these denaturing conditions, the presence of DNA single-strand breaks (SSB), alkali-labile sites (ALS) and double-strand breaks (DSB) can be visualized as DNA migrating away from the nucleus (characteristic "comet" appearance) after staining with a specific fluorochrome. At FQ concentrations that induced minimal loss of cell viability (neutral red uptake assay) the compounds tested induced comets with a rank order of BAYy3118 norfloxacin ciprofloxacin lomefloxacin fleroxacin nalidixic acid. If cells were incubated after treatment for 1 h at 37oC, the comet score decreased, suggesting efficient removal of SSB/ALS/DSB. Addition of the DNA polymerase, inhibitor, aphidicolin, to cells treated with either ciprofloxacin alone or ciprofloxacin + UVA resulted in an accumulation of SSB due to the endo/exonuclease steps of excision repair. We have demonstrated that the FQ are photogenotoxic in mammalian cells but that FQ-pho-tosensitized SSB are efficiently repaired. Preliminary evidence that ciprofloxacin photosensitizes the formation of DNA lesions warranting excision repair may indicate production of more mutagenic lesions.  相似文献   

11.
The mechanisms by which ionizing radiation directly causes strand breaks in DNA were investigated by comparing the chemical yield of DNA-trapped free radicals to the chemical yield of DNA single strand break (ssb) and double strand break (dsb), as a function of hydration (Gamma). Solid-state films of plasmid pUC18, hydrated to 2.5 < Gamma < 22.5 mol, were X-irradiated at 4 K, warmed to room temperature, and dissolved in water. Free radical yields were determined by EPR at 4 K. With use of the same samples, Gel electrophoresis was used to measure the chemical yield of total strand breaks, which includes prompt plus heat labile ssb; G'total(ssb) decreased from 0.092 +/- 0.016 micromol/J at Gamma= 2.5 to 0.066 +/- 0.008 micromol/J at Gamma= 22.5. Most provocative is that at Gamma= 2.5 the yield of total ssb exceeds the yield of trapped deoxyribose radicals: G'total(ssb) - G'sugar(fr) = 0.06 +/- 0.02 micromol/J. Nearly 2/3 of the strand breaks are derived from precursors other than radicals trapped on the deoxyribose moiety. To account for these nonradical precursors, we hypothesize that strand breaks are produced by two one-electron oxidations at a single deoxyribose residue within an ionization cluster.  相似文献   

12.
2‐Fluoroadenine (2FA) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low‐energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in 2FA are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion‐mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in 2FA‐containing oligonucleotides upon irradiation with LEEs. The incorporation of 2FA into DNA results in an enhanced strand breakage. The strand‐break cross sections are clearly energy dependent, whereas the strand‐break enhancements by 2FA at 5.5, 10, and 15 eV are very similar. Thus, 2FA can be considered an effective radiosensitizer operative at a wide range of electron energies.  相似文献   

13.
采用密度泛函理论(DFT)和MΦller-Pleset微扰理论(MP)方法对氯乙基亚硝基脲(CENUs)烷化DNA碱基导致单链断裂的机理进行了研究. 对包括CENUs的分解、DNA碱基的烷化、糖苷键的水解、脱嘌呤位点的开环以及最终导致单链断裂的磷酸二酯的消除在内的多步反应过程进行了探讨. 在B3LYP/6-31++G**水平上对各驻点(反应物、中间体、过渡态和生成物)进行了全几何结构优化; 为了模拟细胞环境, 采用自洽场连续极化模型(CPCM)在相同计算水平上对各驻点进行了水相中的单点能计算或全几何结构优化. 分别在B3LYP/6-31++G**和MP2/6-311++G**水平上绘出反应势能曲线, 结果显示, 在整个反应过程中, 磷酸二酯的消除反应能垒最高, 而氯乙基重氮盐离子烷化DNA碱基的反应能垒最低. 理论分析结果表明, CENUs 一旦分解便很容易烷化DNA碱基, 随后生成的氯乙基化鸟嘌呤会迅速从DNA链上脱去, 尽管如此, 脱嘌呤位点最终导致DNA单链断裂的一系列反应则是一个缓慢的过程, 这与断链反应的动力学实验结果相符合.  相似文献   

14.
Our knowledge of the mechanisms of radiation damage to DNA induced by secondary electrons is still very limited, mainly due to the large sizes of the system involved and the complexity of the interactions. To reduce the problem to its simplest form, we investigated specific electron interactions with one of the most simple model system of DNA, an oligonucleotide tetrameter compound of the four bases. We report anion desorption yields from a thin solid film of the oligonucleotide GCAT induced by the impact of 3-15 eV electrons. All observed anions (H-, O-, OH-, CN-, and OCN-) are produced by dissociative electron attachment to the molecule, which results in desorption peaks between 6 and 12 eV. Above 14 eV nonresonant dipolar dissociation dominates the desorption yields. By comparing the shapes and relative intensities of the anion yield functions from GCAT physisorbed on a tantalum substrate with those obtained from isolated DNA basic subunits (i.e., bases, deoxyribose, and phosphate groups) from either the gas phase or condensed phase experiments, it is possible to obtain more details on the mechanisms involved in low energy electron damage to DNA, particularly on those producing single strand breaks.  相似文献   

15.
A detailed understanding of nascent reactive events leading to DNA damage is required to describe ionizing radiation effects on living cells. These early, sub-picosecond events involve mainly low energy (E < 20 eV) secondary electrons (SE), and low energy (E < 5 eV) secondary ion (and neutral) fragments; the latter are created either by the primary radiation, or by SE via dissociative electron attachment (DEA). While recent work has shown that SE initiate DNA strand break formation via DEA, the subsequent damage induced by the DEA ion fragments in DNA, or its basic components is unknown. Here, we report 0-20 eV electron impact measurements of anion desorption from condensed films containing O2 and either benzene (C6H6), or toluene (C6H5CH3); these molecules represent the most fundamental structural analogs of pyrimidine bases. Our experiments show that all of the observed OH- yields are the result of reactive scattering of 1-5 eV O- fragments produced initially by DEA to O2. These O- reactions involve hydrogen abstraction from benzene or toluene, and result in the formation of benzyl radicals, or toluene radicals centered on either the ring or exocyclic methyl group. O- scatters over nm distances comparable to DNA dimensions, and reactions involve a transient anion collision complex. Anion desorption is found to depend on both, the temperature of hydrocarbon film formation (morphology), and the order of overlayer adsorption, e.g. O2 on benzene, or benzene on O2. Our measurements support the notion that in irradiated DNA similar secondary-ion reactions can be initiated by the abundant secondary electrons, and may lead to clustered damage.  相似文献   

16.
Pal S  Kim MJ  Choo J  Kang SH  Lee KH  Song JM 《Analytica chimica acta》2008,622(1-2):195-200
A simple, accurate and robust methodology was established for the direct quantification of ultraviolet (UV)-induced single-strand break (SSB) using oligonucleotide chip. Oligonucleotide chips were fabricated by covalently anchoring the fluorescent-labeled ssDNAs onto silicon dioxide chip surfaces. Assuming that the possibility of more than one UV-induced SSB to be generated in a small oligonucleotide is extremely low, SSB formation was investigated quantifying the endpoint probe density by fluorescence measurement upon UV irradiation. The SSB yields obtained based on the highly sensitive laser-induced fluorometric determination of fluorophore-labeled oligonucleotides were found to coincide well with that predicted from a theoretical extrapolation of the results obtained for plasmid DNAs using conventional agarose gel electrophoresis. The developed method has the potential to serve as a high throughput, sample-thrifty, and time saving tool to realize more realistic, and direct quantification of radiation and chemical-induced strand breaks. It will be especially useful for determining the frequency of SSBs or lesions convertible to SSBs by specific cleaving reagents or enzymes.  相似文献   

17.
Abstract— The aim of this investigation is the evaluation of DNA interaction of with tetraruthenated porphyrin (TRP) and of DNA damage in the presence of light. Direct-fluorescence and electronic absorption measurements after incubation of DNA with TRP indicate strong binding between pBR322 DNA or calf thymus DNA with the modified porphyrin. Exposure of pBR322 DNA to TRP (up to 3 μ M ) and light leads to single-strand break formation as determined by the conversion of the supercoiled form (form I) of the plasmid into the nicked circular form (form II). Oxidative DNA base damage was evaluated by the detection of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) after irradiation of calf thymus DNA in the presence of the TRP. The data demonstrated a dose and time dependence with each type of DNA damage. These data indicate (1) a specificity of the binding mode and (2) type I and II photoinduced mechanisms leading to strand scission activity and 8-oxodGuo formation. Accordingly, singlet molecular oxygen formation, after TRP excitation, was confirmed by near-infrared emission. From these investigations a potential application of TRP in photodynamic therapy is proposed.  相似文献   

18.
Abstract— Alkaline elution has been used to detect ultraviolet radiation (UVR)-induced DNA damage in the epidermis of C3H/Tif hr/hr mice. This technique detects DNA damage in the form of single-strand breaks and alkali-labile sites (SSB) formed directly by UVA (320–400 nm) or indirectly by UVB (280–320 nm). The latter induces DNA damage such as cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6–4)-photoproducts, which are then converted into transient SSB by cellular endonucleases, during nucleotide excision repair (NER). The irradiation system used had a spectral output similar in effect to solar UVR, with the UVB component inducing 94% of the edema response observed in mice. Consequently, the majority of SSB detected were those formed via NER of UVB-induced photoadducts. The number of SSB detected immediately after 8 kj/m2 (2.7 minimum erythema doses determined at 48 h post-UVR [MED]) was low, indicating the formation of only small numbers of transient SSB. When DNA repair inhibitors hydroxyurea and 1 -β-D-arabinofuranosylcytosine were administered (intraperi-toneally) to mice 30 min before UVR, they prevented sealing of the DNA SSB formed during NER. A four-fold increase in the number of SSB detected resulted, which was found to be linearly related to the UVR dose. The SSB induced by 2 kj/m2 (less than an MED) were readily detected, with the ear showing lower numbers of SSB than the dorsum. When repair inhibitors were added post-UVR, the rate of formation of SSB declined rapidly with time of administration, reflecting repair of DNA lesions. After a UVR dose of 6 kj/m2 (2 MED), 50% of the initial repair-dependent SSB had been removed after approximately 2 h in the ear and 4 h in the dorsum; no more SSB appeared to be incised by 24 h post-UVR. The technique described is an efficient and highly sensitive one for the quantification of SSB induced in UV-irradiated skin samples in vivo.  相似文献   

19.
Fluorometric analysis of DNA unwinding (FADU assay) was originally designed to detect X-ray-induced DNA damage in repair-proficient and repair-deficient mammalian cell lines. The method was modified and applied to detect DNA strand breaks in Chinese hamster ovary (CHO) cells exposed to ionizing radiation as well as to UV light. Exposed cells were allowed to repair damaged DNA by incubation for up to 1 h after exposure under standard growth conditions in the presence and in the absence of the DNA synthesis inhibitor aphidicolin. Thereafter, cell lysates were mixed with 0.15 M sodium hydroxide, and DNA unwinding took place at pH 12.1 for 30 min at 20 degrees C. The amount of DNA remaining double-stranded after alkaline reaction was detected by binding to the Hoechst 33258 dye (bisbenzimide) and measuring the fluorescence. After exposure to X-rays DNA strand breaks were observed in all cell lines immediately after exposure with subsequent restitution of high molecular weight DNA during postexposure incubation. In contrast, after UV exposure delayed production of DNA strand break was observed only in cell lines proficient for nucleotide excision repair of DNA photoproducts. Here strand break production was enhanced when the polymerization step was inhibited by adding the repair inhibitor aphidicolin during repair incubation. These results demonstrate that the FADU approach is suitable to distinguish between different DNA lesions (strand breaks versus base alterations) preferentially induced by different environmental radiations (X-rays versus UV) and to distinguish between the different biochemical processes during damage repair (incision versus polymerization and ligation).  相似文献   

20.
The yields of gamma-radiation-induced single- and double-strand breaks (ssb's and dsb's) as well as base lesions, which are converted into detectable ssb by the base excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg), at 278 K have been measured as a function of the level of hydration of closed-circular plasmid DNA (pUC18) films. The yields of ssb and dsb increase slightly on increasing the level of hydration (Gamma) from vacuum-dried DNA up to DNA containing 15 mol of water per mole of nucleotide. At higher levels of hydration (15 < Gamma < 35), the yields are constant, indicating that H2O*+ or diffusible hydroxyl radicals, if produced in the hydrated layer, do not contribute significantly to the induction of strand breaks. In contrast, the yields of base lesions, recognized by Nth and Fpg, increase with increasing hydration of the DNA over the range studied. The maximum ratios of the yields of base lesions to that of ssb are 1.7:1 and 1.4:1 for Nth- and Fpg-sensitive sites, respectively. The yields of additional dsb, revealed after enzymatic treatment, increase with increasing level of hydration of DNA. The maximum yield of these enzymatically induced dsb is almost the same as that for prompt, radiation-induced dsb's, indicating that certain types of enzymatically revealed, clustered DNA damage, e.g., two or more lesions closely located, one on each DNA strand, are induced in hydrated DNA by radiation. It is proposed that direct energy deposition in the hydration layer of DNA produces H2O*+ and an electron, which react with DNA to produce mainly base lesions but not ssb. The nucleobases are oxidized by H2O*+ in competition with its conversion to hydroxyl radicals, which if formed do not produce ssb's, presumably due to their scavenging by Tris present in the samples. This pathway plays an important role in the induction of base lesions and clustered DNA damage by direct energy deposition in hydrated DNA and is important in understanding the processes that lead to radiation degradation of DNA in cells or biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号