首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for determining traces of boron in water, fertilizers, geological and biological (reference) materials by isotope-dilution mass spectrometry after separation on an Amberlite IRA-743 borate-selective ion-exchange column. Boron (–250 ng g?1) in water can be determined with an accuracy of 5–20% (computed on a 2s basis). After correction for weighing errors and for moisture, content, which varied from 0 to 8% for the samples tested, 1–35 μg g?1 boron in “dry” fertilizer, biological or geological sample can be assayed with an accuracy of 5–30% (2s). In an IAEA interlaboratory program on a simulated fresh water, the method yielded a value of 24.3 +? 2 μg l?1, compared to the make-up value of 25 μg l?1.  相似文献   

2.
A method is described involving flow injection and inductively coupled plasma emission spectrometry for the determination of boron (0.5–25 mg l?1) in water at a sampling rate of 320 h?1. An 11-ml capacity cloud chamber, with a tangential aerosol outlet, was used to introduce the nebulized sample to the plasma. The sample volume injected was 300 μl. The relative standard deviation for peak height was 3% for 10 mg l?1 of boron at a carier flow-rate of 3.5 ml min?1. The wash-out between samples was improved by using the 11-ml cloud chamber rather than a conventional 110-ml chamber.  相似文献   

3.
A method was developed for the determination of boron in titanium by inductively coupled plasma mass spectrometry (ICP-MS). A commercially available PTFE sample introduction system, leading to the desired low detection limits for boron, was used. The method is suitable for the determination of boron concentrations down to about 1 μg g?1 in the solid material. The influence of the internal standard on the precision was studied and beryllium was selected as the internal standard. For the titanium analysed (BCR reference material 090), the ICP-MS result agreed with those obtained using other techniques. Several bars of titanium reference material were supplied and a study of the homogeneity of boron in this material was made. Using analysis of variance on the results obtained for the different bars, the homogeneity of boron in the reference material could be estimated to be better than 2.1%.  相似文献   

4.
An extended study of different sampling introduction approaches using inductively coupled plasma mass spectrometry (ICP-MS) is presented for the determination of boron in steel samples. The following systems for sample introduction were applied: direct sample solution nebulization by continuous nebulization (CN) using a cross-flow nebulizer and with flow injection (FI), applied to 0.1% (m/v) and 0.5% (m/v) sample solutions, respectively; FI after iron matrix extraction, using acetylacetone–chloroform, and isotopic dilution (ID) analysis as the calibration method; FI with on-line electrolytic matrix separation; and spark ablation (SA) and laser ablation (LA) as solid sampling techniques. External calibration with matrix-matching samples was used with CN, SA, and LA, and only acid solutions (without matrix matching) with FI methods. When FI was directly applied to a sample solution, the detection limit was of 0.15 μg g−1, improving by a factor of 4 that was obtained from the CN measurements. Isotopic dilution analysis, after matrix removal by solvent extraction, made it possible to analyse boron with a detection limit of 0.02 μg g−1 and, with the on-line electrolytic process, the detection limit was of 0.05 μg g−1. The precision for concentrations above 10 times the detection limit was better than 2% for CN, as well as for FI methods. Spark and laser ablation sampling systems, avoiding digestion and sample preparation procedures, provided detection limits at the μg g−1 levels, with RSD values better than 6% in both cases. Certified Reference Materials with B contents in the range 0.5–118 μg g−1 were used for validation, finding a good agreement between certified and calculated values.  相似文献   

5.
Several sample preparation methods were evaluated for determination of free carbon in boron carbide powders by quantitative X-ray diffraction method, including ultrasonication, wet ball milling and dry ball milling–wet mixing. Quantitation was based on measuring the integral peak area ratio of the diffraction lines of graphite (002) to boron carbide (012) in samples spiked with pure graphite. The dry milling–wet mixing method provided the best precision and accuracy in all the measurements as well as in determination of free carbon in a boron carbide reference material. There was a linear relationship between the integral peak area ratios and graphite added to boron carbide samples which were purified from their free carbon content. The method provided a low detection limit of 0.05 wt% free carbon.  相似文献   

6.
The procedure involves separate sampling and determination of the insoluble, cationic and anionic species of corrosion products (Fe, Ni, Cr, Mn, Co, Zn, Cu) in the primary coolant of pressurized water reactors (PWRs) with concentrations in the range 0–2000 mg l?1 boron and 0–5 mg l?1 lithium. Samples of coolant (0.2–1 l) are passed through packs consisting of one 0.45-μm filter paper, one cation-exchange membrane (Whatman SA-2) and one anion-exchange membrane (Whatman SB-2). The membranes are examined by wavelength-dispersive x-ray spectrometry. Selection of the ion-exchange membranes and the influence of the boron and lithium concentrations (and pH) on retention of soluble species are discussed. With sample volumes of 0.5 l, the detection limits are between 0.05 and 0.3 μg l?1 for undissolved species and from 0.03 to 0.14 μg l?1 for ions. Data collected during a PWR shutdown procedure are summarized.  相似文献   

7.
A sensitive, automated method for the determination of boron in water samples is described, involving flow injection with on-line ion-exchange preconcentration and spectrophotometric detection of the azomethine-H—boron complex. The method is applicable to various water samples and is free from interferences, even in coloured samples. Detection limits of 5 μg l?1 at 20 samples h?1 and 1 μg l?1 at 10 samples h?1 with relative standard deviations of < 10% at 1–10 μg l?1 and < 5%at 10–200 μg l?1 levels of boron were achieved. The recoveries for spiked natural water samples ranged from 96 to 101%. The method compares favourably with inductively coupled plasma atomic emission spectrometry.  相似文献   

8.
For monitoring the boron concentration in reverse osmosis (RO) water produced by desalination plants, a voltammetric determination method for the amount of electrochemically inactive boron has been developed by using the complexation with 4,5‐dihydroxybenzene‐1,3‐disulfonic acid (Tiron). Cyclic voltammetric measurements showed the oxidation peak of boric acid–Tiron 1 : 1 complex at 920 mV. This peak was successfully applied to the determination of boron in RO water with the LOD of 0.1 mg B dm?3 by using differential pulse voltammetry. The redox and acid–dissociation behaviors of Tiron and its boron complex are found to depend on the properties of pH buffer reagent.  相似文献   

9.
Industrial silicon carbide powder was consolidated with boron by the spark-plasma-sintering (SPS) method. It was shown that a preliminary mechanical activation is a promising method for introduction of high concentrations of boron into silicon carbide. The influence exerted by the boron concentration on the sintering and properties of the material based on silicon carbide was examined. A ceramic based on silicon carbide with 10 wt % amorphous boron was obtained with density of 3.12 g cm–3, hardness of 31.9 GPa, and crack-resistance coefficient of 5.7 MPa m1/2. The ceramic is promising as a construction ceramic for nuclear reactors and gas-turbine engines.  相似文献   

10.
Laser induced breakdown spectroscopy (LIBS) was applied to the determination of sub-ppm levels of boron in ground water samples using spectroscopically pure graphite planchets as solid support. The data obtained by LIBS agreed well with those from ICP-AES. No spectral interference due to the possibly interfering elements Fe, Cr, Al and Mo was observed. The detection limit was 0.01 µg.g?1 for boron using the B(I) 249.773 nm emission line. The method is considered to be promising for the rapid determination of boron, with an acceptable degree of accuracy and without the need for elaborate sample treatment, preconcentration and purification steps.  相似文献   

11.
 Precise boron isotope ratio measurements with negative thermal ionization mass spectrometry were used for the identification of ground water contaminations by leakages of landfills. BO- 2thermal ions were produced to determine the 11B/10B isotope ratio, which was expressed as δ11B value in ‰ normalized to the standard reference material NIST SRM 951. For example, household waste influences the boron isotope ratio by specific components such as washing powder. In the case of one investigated landfill low δ11B values correlate well with high boron concentrations in contaminated seepage water samples and vice versa for uncontaminated ground water samples. Possible boron contributions of rainwater were taken into account, determining a boron content of 2.3 μg/L and a δ11B value of 13.1‰ for a representative sample. Such low boron concentrations were determined by isotope dilution mass spectrometry (detection limit 0.3 μg/L) whereas higher contents were also analyzed by a spectrophotometric method. However, different sources of contamination could only be identified by the isotope ratio and not by the concentration of boron. Received: 9 December 1996/Accepted: 18 February 1997  相似文献   

12.
In this research, ultrasound irradiation as a simple method was used to produce boron nanostructures. Reaction conditions such as boron concentration and sonication time show important roles in the size, morphology and growth process of the final products. The boron nanostructures (nanoparticles and nanorods) were characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, small-angle X-ray scattering and inductively coupled plasma atomic emission spectroscopy techniques. Primary evaluation of results showed that nanoparticles and nanorods of boron successfully have been prepared with 25–40 and 50–100 nm average particle size, respectively. These nanostructures (nanoparticles and nanorods) were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP) particles. Thermochemical decomposition behaviors of treated samples were characterized by thermal gravimetric analysis and differential scanning calorimetry techniques. Also, the kinetic parameters of thermal decomposition processes of pure and treated samples were obtained by nonisothermal methods proposed by Kissinger and Ozawa. However, boron nanoparticles with the smallest average particle size (25–40 nm) have the most significant catalytic effect including the decrease in decomposition temperature of AP + B nanocomposite by 100 °C, increase in the heat of decomposition from 580 to 1354 J g?1 and decrease in activation energy from 207 to 110 kJ mol?1.  相似文献   

13.
14.
《Electroanalysis》2018,30(8):1880-1885
This work presents a simple and low‐cost method for fast and selective determination of Verapamil (VP) in tablets and human urine samples using a boron‐doped diamond working electrode (BDD) coupled to a flow injection analysis system with multiple pulse amperometric detection (FIA‐MPA). The electrochemical behaviour of VP in 0.1 mol L−1 sulfuric acid showed three merged oxidation peaks at around +1.4 V and upon reverse scan, one reduction peak at 0.0 V (vs. Ag/AgCl). The MPA detection was performed applying a sequence of three potential pulses on BDD electrode: (1) at +1.6 V for VP oxidation, (2) at +0.2 V for reduction of the oxidized product and (3) at +0.1 V for cleaning of the working electrode surface. The FIA system was optimized with injection volume of 150 μL and flow rate of 3.5 mL min−1. The method showed a linear range from 0.8 to 40.0 μmol L−1 (R>0.99) with a low limit of detection of 0.16 μmol L−1, good repeatability (RSD<2.2 %; n=10) and sample throughput (45 h−1). Selective determination of VP in urine was performed at+0.2 V due to absence of interference from ascorbic and uric acids in this potential. The addition‐recovery tests in both samples were close to 100 % and the results were similar to an official method.  相似文献   

15.
This work describes the design, fabrication, and testing of a lucite bodied proportional gas detection system for the analysis of boron in selected samples via detection of the charged particles produced in the 10B(n,)7Li reaction induced by thermal neutrons. The detector was designed for internal placement of samples; the sample types of major interest were airborne aerosols collected on filters or particulate impaction plates. Samples were irradiated with the detector in the thermal neutron field produced in the graphite thermal column of the University of Lowell's one megawatt research reactor. Determined sensitivities for boron varied from 6.2·10–8 to 1.73·10–6 cpm·ng–1 (n·cm–2J·s–1)–1 depending on the physical characteristics of the samples. For a nominal counting time of ten minutes the lower limit of mass detection of natural boron was determined to be 12.1 nanograms. The analytical method was applied to the estimation of boron in fourteen samples of natural aerosols collected on membrane filters. Analysis of prepared samples and natural aerosol samples by ICP emission showed good agreement with analysis via the (n,) reaction. Application of the method to other sample types was demonstrated by the determination of boron in samples of borosilicate glass and borated polyethylene.  相似文献   

16.
Mono‐ and bis(diphenylborane)‐fused porphyrins were synthesized from the corresponding β‐(2‐trimethylsilylphenyl)‐substituted porphyrins through the sequence of Si–B exchange reaction, intramolecular bora‐Friedel–Crafts reaction, and ring‐closing Si–B exchange reaction. Effective electronic interactions of the empty p‐orbital of the boron atom with the porphyrin π‐circuit lead to red‐shifted absorption spectra and substantially decreased LUMO energy levels. Pyridine adds at the boron center to cause disruption of the electronic interaction of the boron atom with large association constants (1.9–17×104 m ?1) depending on the central metal at the porphyrin. The ZnII complex behaved as a hetero‐dinuclear Lewis acid, exhibiting regioselective binding of pyridines at the boron or the zinc center.  相似文献   

17.
The development and implementation of a method for the certification of cadmium in blood samples at low ng g–1 and sub ng g–1 levels is described. The analytical procedure is based on inductively coupled plasma isotope dilution mass spectrometry (ICP–IDMS) applied as a primary method of measurement. Two different sample digestion methods, an optimized microwave digestion procedure using HNO3 and H2O2 as oxidizing agents and a high-pressure asher digestion procedure, were developed and compared. The very high salt content of the digests and the high molybdenum content, which can cause oxide-based interferences with the Cd isotopes, were reduced by a chromatographic matrix separation step using an anion-exchange resin. All isotope ratio measurements were performed by a quadrupole ICP–MS equipped with an ultrasonic nebulizer with membrane desolvator. This sample introduction set-up was used to increase sensitivity and minimize the formation of oxides (less MoO+ interference with the Cd isotopes). Because of the very low Cd concentrations in the samples and the resulting need to minimize the procedural blank as much as possible, all sample-processing steps were performed in a clean room environment. Detection limits of 0.005 ng g–1 Cd were achieved using sample weights of 2.7 g. The method described was used to re-certify the cadmium content of three different blood reference materials from the Community Bureau of Reference (BCR) of the European Commission (BCR-194, BCR-195, BCR-196). Cadmium concentrations ranged between ~0.2 ng g–1 and ~12 ng g–1. For these materials, SI-traceable certified values including total uncertainty budgets according to ISO and Eurachem guidelines were established.  相似文献   

18.
Carbon fibers (CFs) were modified with carbon nanoparticles (CNPs) by a facile and fast flame preparation method. CNPs-CFs were observed by scanning electron microscope, and the nano-scaled granular structure on the surface was found. This material was also characterized by Raman microscope and X-ray photoelectron spectroscope. It was placed into a polyetheretherketone tube to get an extraction tube, which was connected with high performance liquid chromatography for online analysis. The tube displayed the effective extraction to several polycyclic aromatic hydrocarbons (PAHs), based on the possible hydrophobic and π stacking mechanism. Under the optimized conditions (60 mL of sample volume, 2.00 mL min?1 of sample rate, 0.5% of methanol in sample, 2.0 min of desorption time), an analytical method towards these PAH targets was established. The low limits of detection (0.001–0.005 μg L?1), satisfactory linear ranges (0.003–5.0 μg L?1, 0.003–10.0 μg L?1) and efficient enrichment factors (1012–3164) were presented. The method was applied to detect trace targets in several water samples and satisfactory results were obtained. The method provided some superiorities over other analytical methods, like online test, shorter time and better sensitivity.  相似文献   

19.
Co‐pyrolysis of B2Br4 with PBr3 at 480 °C gave, in addition to the main product closo‐1,2‐P2B4Br4, conjuncto‐3,3′‐(1,2‐P2B4Br3)2 ( 1 ) and the twelve‐vertex closo‐1,7‐P2B10Br10 ( 2 ), both in low yields. X‐ray structure determination for 1 [triclinic, space‐group P1 with a = 7.220(2) Å, b = 7.232(2) Å, c = 8.5839(15) Å, α = 97.213(15)°, β = 96.81(2)°, γ = 94.07(2)° and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron–boron linked distorted octahedra with the bridging boron atoms in the 3,3′‐positions and the phosphorus atoms in the 1,2‐positions. The intercluster 2e/2c B–B bond length is 1.61(3) Å. The shortest boron–boron bond within the cluster framework is 1.68(2) Å located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by 11B‐11B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7‐positions. Both the X‐ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross‐cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B‐Hal substitution at the boron positions trans to phosphorus.  相似文献   

20.
A simple, fast method for the determination of boron in plant extracts is described. The method utilizes injection of 1.0 ml of an acid plant digest into a 0.1 M hydrochloric acid stream, with further addition of a buffer—masking solution and azomethine-H as the colour-forming reagent. Effects of pH, kinetics of colour reaction development, sample volume, reagent composition and interferences are described. The proposed method allows the analysis of plant extracts with boron contents in the range 0.1–6.0 ppm at a rate of 60 determinations per hour, with a reagent consumption of 2 mg of azomethine-H per sample. The precision is good (r.s.d. < 1%) and the results agree with those obtained by the curcumin method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号