首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
《Analytical letters》2012,45(12):2327-2337
Abstract

The use of surfactant containing mobile phases to prevent or reduce the effects of adsorptive fouling of glassy carbon electrodes is reported. Both cationie and antonic surfactants are studied at concentrations above and below the critical micelle concentration. For the oxidative reactions studied here, anionic surfactants have little effect on the fouling problem, likely because of electrostatic attraction of the generated cattonic intermediate to surfactant adsorbed on the electrode surface. Cationic surfactants, however, have the desired effect. Two cationic surfactants, cetyltrimethylammonium chloride and n-decylamine were studied with solutes p-nitrophenol, phenylenediamine and chlorpromazine. With these surfactants present in the mobile phase there was generally no loss of electrochemical response after up to 55 sequential injections. Adsorption of the electroactive specie prior to the electron-transfer process is shown to be a significant cause of poor chromatographic efficiency for some solutes.  相似文献   

2.
Aqueous solutions of bile salts, i.e. sodium cholate (NaC), sodium deoxycholate (NaDC), and sodium taurocholate (NaTC), are characterized and evaluated as reversed-phase liquid chromatographic (RPLC) mobile phases. The separation of the ASTM-recommended RPLC test mix in addition to more than 50 other compounds on a C18 column demonstrates the viability of these bile salts as HPLC mobile phases. The Armstrong-Nome theory was applied and found to adequately describe the partitioning behavior of solutes eluted with these bile salts at low surfactant concentrations. The effect of alcohol additives on chromatographic retention and efficiency was also assessed. Not only are the bile salt molecules rigid and chiral, but they form helical micellar aggregates as well. Consequently, many isomeric compounds can be easily resolved with this mobile phase additive. The base-line resolution of some binaphthyl-type enantiomers with a standard C18 column and the bile salt micellar mobile phases is also demonstrated. In addition, these bile salt mobile phases may be preferable to conventional hydroorganic mobile phase systems for the separation of many classes of routine compounds. A brief prospectus on the future utilization of bile salts in liquid chromatography is presented.  相似文献   

3.
When aquenous micellar solutions are used as mobile phases in liquid chromatography, retention of solutes depends on the concentration of the micellar surfactant, and relevant information about the partition coefficient and related association constants between solutes and micelles can be calculated from the chromatographic results. The chromatographic parameters of a series of phenols and hydroxyphenols (1,2- and 1,4-diols) eluted with sodium dodecyl sulfate micelles were measured. The association constants evaluated were in good agreement with those obtained by other techniques.  相似文献   

4.
Surfactant micellization and micellar solubilization in aqueous solution can be modeled using a molecular-thermodynamic (MT) theoretical approach; however, the implementation of MT theory requires an accurate identification of the portions of solutes (surfactants and solubilizates) that are hydrated and unhydrated in the micellar state. For simple solutes, such identification is comparatively straightforward using simple rules of thumb or group-contribution methods, but for more complex solutes, the hydration states in the micellar environment are unclear. Recently, a hybrid method was reported by these authors in which hydrated and unhydrated states are identified by atomistic simulation, with the resulting information being used to make MT predictions of micellization and micellar solubilization behavior. Although this hybrid method improves the accuracy of the MT approach for complex solutes with a minimum of computational expense, the limitation remains that individual atoms are modeled as being in only one of two states-head or tail-whereas in reality, there is a continuous spectrum of hydration states between these two limits. In the case of hydrophobic or amphiphilic solutes possessing more complex chemical structures, a new modeling approach is needed to (i) obtain quantitative information about changes in hydration that occur upon aggregate formation, (ii) quantify the hydrophobic driving force for self-assembly, and (iii) make predictions of micellization and micellar solubilization behavior. This article is the first in a series of articles introducing a new computer simulation-molecular thermodynamic (CS-MT) model that accomplishes objectives (i)-(iii) and enables prediction of micellization and micellar solubilization behaviors, which are infeasible to model directly using atomistic simulation. In this article (article 1 of the series), the CS-MT model is introduced and implemented to model simple oil aggregates of various shapes and sizes, and its predictions are compared to those of the traditional MT model. The CS-MT model is formulated to allow the prediction of the free-energy change associated with aggregate formation (gform) of solute aggregates of any shape and size by performing only two computer simulations-one of the solute in bulk water and the other of the solute in an aggregate of arbitrary shape and size. For the 15 oil systems modeled in this article, the average discrepancy between the predictions of the CS-MT model and those of the traditional MT model for gform is only 1.04%. In article 2, the CS-MT modeling approach is implemented to predict the micellization behavior of nonionic surfactants; in article 3, it is used to predict the micellization behavior of ionic and zwitterionic surfactants.  相似文献   

5.
The liquid chromatographic analysis of drugs in urine through direct injection without any sample pretreatment was extended to micellar chromatography with nonionic surfactants, the Pinkerton ISRP column and the shielded hydrophobic phase (Hisep) column. The feasibility of using each was demonstrated through the determination of the diuretic, hydrochlorothiazide, in urine. Good separation, recovery, precision and linearity, and adequate limits of detection were obtained for this analysis with all three techniques. The advantages and limitations of the mobile phase approach of micellar chromatography and the two stationary phase approaches are discussed for the direct injection of urine as well as other biological fluids.  相似文献   

6.
Summary The absolute concentrations and the concentration distribution of different cationic ion-pairing reagents, such as tetramethylammonium bromide, tetrabutylammonium bromide, cetyltrimethylammonium bromide and trioctylmethylammonium chloride were studied after chromatographic development on physically and chemically bonded reversed-phase layers. The combination of the chromatographic conditions involved three variations. Untreated layers were chromatographed with mobile phases containing the ion-pairing reagent. Several layers were treated with the ion-pairing reagent prior to the chromatographic run, and methanol-water mixtures were used as mobile phase. In a third set of experiments both the layer and the mobile phase contained the ion-pairing reagent. The chromatographic behaviour of acid, neutral and basic model compounds were also studied. For the determination of different reagents remaining on the layer after the chromatographic run, spectrophotometric, potentiometric methods and capillary electrophoresis were used. The performance of the analytical methods was evaluated. Results obtained for the absolute concentrations and distribution of the reagents and the retention data were compared to those obtained on silica gel layers. A discussion of the retention mechanism is given. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

7.
Data reported in the literature on the use of surfactants as modifiers of mobile and stationary phases in thin-layer chromatography are analyzed. The features of micellar and ion-pair versions of thin-layer chromatography and the dynamic and static modifications of stationary phases with surfactants are considered.  相似文献   

8.
Mixed ionic-nonionic surfactant mobile phases for ion-exclusion chromatography of carboxylic acids permitted the analysis time to be reduced by partitioning the analytes could be determined without interference even when they eluted near the void volume. These advantages result from the formation of mixed micelles of the two surfactants. The partition behaviour of both neutral and charged analytes to a nonionic micellar phase was evaluated on the basis of a retention model that included dissociation equilibria of analytes. In addition, the partition coefficients to mixed micellar phases were also determined by using this model.  相似文献   

9.
A review is presented of the use of fluorinated phases and fluorine-containing surfactants in chromatography. Additionally, new information is provided on the application of two nonionic perfluorosurfactants as reversed-phase mobile phase additives to enhance chromatographic performance of aromatic amines and some amines of pharmaceutical significance.  相似文献   

10.
The effect of triethylamine as a mobile phase modifier on chromatographic efficiency in micellar liquid chromatography (MLC) is reported for nine different columns with various bonded stationary phases and silica pore sizes, including large-pore short alkyl chain, non-porous, and perfluorinated. Reduced plate height (h) versus reduced velocity (nu) plots were constructed for each column and the A' and C' terms calculated using a simplified Van Deemter equation introduced in our previous work. To further explore the practicality of using triethylamine in the micellar mobile phase, the efficiency of nine polar and non-polar substituted benzenes was studied on seven columns. Surfactant adsorption isotherms were measured for five columns with three micellar mobile phases to understand the relationship between adsorbed surfactant, mobile phase additive, and column efficiency. Clear improvements in efficiency were observed with the addition of 2% (v/v) triethylamine to a 1-butanol modified aqueous micellar mobile phase. This finding is supported by the lower amount of surfactant adsorbed onto the stationary phase when TEA is present in the mobile phase compared to an SDS only or a 1-butanol modified SDS mobile phase.  相似文献   

11.
Immobilized enzyme reactors are used as post-column reactors to modify the detectability of analytes. An immobilized amino acid oxidase reactor was prepared and coupled to an immobilized peroxidase reactor to detect low level of amino acids by fluorescence of the homovanilic dimer produced. A cholesterol oxidase reactor was prepared to detect cholesterol and metabolites by 241 nm UV absorbance of the enone produced. The preparation of the porous glass beads with the immobilized enzymes is described. Micellar liquid chromatography is used with non-ionic micellar phases to separate the amino acids or cholesterol derivatives. It is demonstrated that the non ionic Brij 35 micellar phases are very gentle for the enzyme activity allowing the reactor activity to remain at a higher level and for a much longer time than with hydro-organic classical chromatographic mobile phases or aqueous buffers. The coupling of nonionic micellar phases with enzymatic detection gave limits of detection of 32 pmol (4.8 ng injected) of methionine and 50 pmol (19 ng injected) of 20alpha-hydroxy cholesterol. The immobilized enzyme reactors could be used continuously for a week without losing their activity. It is shown that the low efficiency obtained with micellar liquid chromatography is compensated by the possibility offered by the technique to easily adjust selectivity.  相似文献   

12.
The chromatographic behavior of model ions of biomedical and environmental significance was investigated by using nonionic micellar mobile phases modified with ion‐pair additives. The influence of concentrations of polyoxyethylene (23) lauryl ether and ornithine hydrochloride in the mobile phase on the retention factors of chromium (III), chromium (VI), iodide and bromide ions was studied. The possible mechanisms of retention of the mentioned ions in biopartitioning micellar chromatography with zwitter ion‐pair additives were proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Retention parameters of alkaloid standards were determined on different stationary phases, i.e., octadecyl silica, base-deactivated octadecyl silica, cyanopropyl silica, preconditioned cyanopropyl silica, and pentafluorophenyl, using different aqueous eluant systems: acetonitrile-water mixtures; buffered aqueous mobile phases at pH 3 or 7.8; and aqueous eluants containing ion-pairing reagents (octane-1-sulfonic acid sodium salt and pentane-1-sulfonic acid sodium salt) or silanol blockers (tetrabutyl ammonium chloride and diethylamine). Improved peak symmetry and separation selectivity for basic solutes was observed when basic buffer, ion-pairing reagents, and, especially, silanol blockers as mobile phase additives were applied. The best separation selectivity and most symmetric peaks for the investigated alkaloids were obtained in systems containing diethylamine in the mobile phase. The influence of acetonitrile concentration and kind and concentration of ion-pairing reagents or silanol blockers on retention, peak symmetry, and system efficiency was also examined. The most efficient and selective systems were used for separation of the investigated alkaloids and analysis of Fumaria officinalis and Glaucium flavum plant extracts.  相似文献   

14.
The retention behaviour of beta-lactam antibiotics in micellar electrokinetic chromatography (EKC) was investigated. Sodium dodecyl sulphate (SDS) and sodium N-lauroyl-N-methyltaurate were used an anionic surfactants at concentrations of 0.05-0.3 M. It was found that the retention of ionic substances in micellar EKC is determined by the following three factors: the electrophoretic migration of the ionic substances, the interaction between the ionic substances and ionic surfactants and solubilization of the solute by the micellar phase. A difference in the retention behaviours of cationic substances was observed between the two anionic surfactants, which have different groups neighbouring the charge-bearing groups. The effect of an ion-pairing reagent was also investigated to make the effect of the micelle clearer. All test solutes were successfully separated by micellar EKC at SDS concentrations above 0.1 M, with theoretical plate numbers ranging from 70,000 to 260,000.  相似文献   

15.
Chromatographic behavior of some amino acids in aqueous–organic and aqueous modified micellar mobile phases is studied by thin-layer liquid chromatography. Intrinsic basic laws, features, possibilities, and limitations are revealed. It is shown that the efficiency of the chromatographic separation of amino acids in the presence of electrolytes is significantly improved in micellar mobile phases.  相似文献   

16.
It has been reported that ion enrichment phenomena are observed in liquid chromatographic processes with an aqueous mobile phase on the columns packed with nonionic materials. However, the mechanism of the ion enrichment is not at all well understood. In this study, we investigated the retention and enrichment behaviors of simple inorganic anions on a C18‐bonded silica column and a cross‐linked hydroxylated methacrylic polymer gel column with pure aqueous mobile phases containing various electrolytes. We show that the stacking of ionic solutes can successfully be accounted for by the ion partition model, and it takes place due to the effect of the background coion in the eluent and/or sample solution on the distribution of the ions between the bulk water and the water incorporated in the packing material, which acts as the stationary phase. Using the ion exclusion effect of fixed anionic charges on a packing material as well as the ion stacking by partition, we developed a simple and versatile method for effective enrichment of anionic solutes in aqueous solutions. The enrichment factor and the elution time of the stacked ion zone can be predicted by the ion partition model.  相似文献   

17.
The retention of hydrocortisone, progesterone, dexamethasone, and prednisolone is studied by HPLC and thin-layer chromatography using aqueous-organic, micellar, and cyclodextrin mobile phases. It is demonstrated that micellar and cyclodextrin mobile phases improve the efficiency and selectivity of the chromatographic separation of the indicated hormones compared to aqueous-organic eluents. By comparing the numbers of theoretical plates, the heights equivalent to a theoretical plate, and resolution it was found that micellar mobile phases are more efficient than cyclodextrin ones and can be used for work with Sorbfil plates.  相似文献   

18.
The use of surfactant-based organised assemblies in analytical atomic spectroscopy is extensively and critically reviewed along three main lines: first, the ability of organised media to enhance detection of atomic spectroscopic methods by favourable manipulation of physical and chemical properties of the sample solution second, the extension of separation mechanisms by resorting to organised media and third a discussion of synergistic combinations of liquid chromatography separations and atomic detectors via the use of vesicular mobile phases. Changes in physical properties of sample solutions aspirated in atomic spectrometry by addition of surfactants can be advantageously used in at least four different ways: (i) to improve nebulisation efficiency; (ii) to enhance wettability of solid surfaces used for atomisation; (iii) to improve compatibility between aqueous and organic phases; and (iv) to achieve good dispersion of small particles in “slurry” techniques. Controversial results and statements published so far are critically discussed.The ability of surfactant-based organised assemblies, such as micelles and vesicles, to organise reactants at the molecular level has also been applied to enhance the characteristics of chemical generation of volalite species of metals and semi-metals (e.g., hydride or ethylide generation of As, Pb, Cd, Se, Sn, and cold vapour Hg generation) used in atomic methods. Enhancements in efficiency/transport of volatile species, increases in the reaction kinetics, stabilisation of some unstable species and changes in the selectivity of the reactions by surfactants are dealt with.Non-chromatographic cloud-point separations to design pre-concentration procedures with subsequent metal determination by atomic methods are addressed along with chromatographic separations of expanded scope by addition of surfactants to the conventional aqueous mobile phases of reversed-phase high-performance liquid chromatography.Finally, the synergistic effect of using vesicles to improve both the separation capabilities of reversed-phase HPLC and the detectability of atomic detectors by on-line vesicular hydride generation is described. In particular, the possible separation mechanisms responsible for micellar and vesicular mobile phases in reversed-phase chromatographies are analysed and compared. The possible effect of modification of stationary phases by monomers of the surfactants should also be taken into account. The application of such on-line couplings to develop new hybrid approaches to tackle modern problems of trace element speciation for As, Hg, Se, and Cd completes this revision of the present interface between analytical atomic spectroscopy and surfactant-based organised assemblies.  相似文献   

19.
PEG 12-acyloxy-stearates are used as drug delivery carriers that have low cell damage effects. The mechanical and physical properties surrounding these processes and surfactants are still however not known. In this study, the physicochemical micellar properties of PEG 12-acyloxy-stearates were characterized by optical microscopic, nuclear magnetic resonance, and small-angle X-ray scattering techniques. We determined the phase diagrams of the surfactants as a function of surfactant concentration and temperature, the micellar size and shape, and micellar dynamics. We found that each surfactant has a micellar, cubic Im3m, and hexagonal phase. The aggregation number in the discrete cubic phase, as determined by small-angle X-ray scattering, was approximately 150 for each surfactant, and showed no measurable chain-length dependence. The diffusion coefficients of the surfactant showed a discontinuity between the micellar and cubic phases, where the cubic phases gave very low values on the order of 10(-)(16) m(2) s(-)(1): this value indicates a non-bicontinuous cubic structure. In summary, these surfactants behave to a large extent as nonionic poly(ethylene glycol) surfactants with extended PEG headgroups.  相似文献   

20.
A series of new sugar-based nonionic surfactants have been synthesized and their lyotropic liquid crystalline properties characterized. When in contact with water, these surfactants formed a range of lyotropic liquid crystalline phases, including cubic, hexagonal, and lamellar, as well as a separate micellar phase. These are features that have promise for the crystallization of integral membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号