首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of vanadium(II) as a powerful reducing reagent in flow injection analysis is described. Results are presented for the determination of various organic and inorganic substances. With spectrophotometric detection, based on the absorption by vanadium(II)-EDTA at 350 nm, limits of determination were about 5 X 10?5 mol 1?1. Nitrate, nitrite and hydroxylamine were measured with amperometric detection. The limit of determination was about the same as with spectrophotometric detection. In a slightly acidic medium, hydrazine could be determined with the amperometric detector, with a limit of determination of about 10?4 mol l?1. By coupling an ammonia detection device to the reduction system, the percentage conversions of nitrate, nitrite and hydroxylamine to ammonia were shown to be 26%, 54% and 47%, respectively.  相似文献   

2.
A fast adsorptive stripping voltammetric procedure for simultaneous determination of Ni(II) and Co(II) in the presence of nioxime as a complexing agent at an in situ plated lead film electrode was described. The time of determination of these ions was shortened due to the application of gold as a substrate for lead film. At gold substrate lead film formation and accumulation of Ni(II) and Co(II) complexes with nioxime proceeds simultaneously. To obtain a stable signals for both ions a simple procedure of activation of the electrode was proposed. Calibration graphs for an accumulation time of 20 s were linear from 5×10?9 to 1×10?7 mol L?1 and from 5×10?10 to 1×10?8 mol L?1 for Ni(II) and Co(II), respectively. The procedure with the application of a lead film electrode on a gold substrate was validated in the course of Ni(II) and Co(II) determination in certified reference materials.  相似文献   

3.
A simple, rapid and accurate method for the spectrophotometric determination of chloride in non-polar media is described. The method is based on the well-known reaction of mercury(II) thiocyanate with chloride to release thiocyanate, which then reacts with iron(III). The optimum concentrations of reagents for the determination of chloride in 2,2,4-trimethylpentane (iso-octane) and cyclohexane are reported. The molar absorptivity of the complex at 505 nm is 5120 ± 200 dm3 mol?1 cm?1 for iso-octane and 5340 ± 340 dm3 mol?1 cm?1 for cyclohexane. Beer's Law is obeyed in the range 2 × 10?7–2 × 10?5 mol dm?3 (0.01–1 mg l?1) chloride.  相似文献   

4.
A new macrocyclic ligand, 1,4,8,11-tetraazacyclotetradecane-1,8-bis(methylphosphonic acid)(dipon), is selective complexing agent for copper(II) over other transition metal ions. The ligand was tested for analytical applications of copper(II) determination. Spectrophotometric determination under optimal experimental conditions (?log [H+]= 5.5, c L≈ 5 × 10?4 mol L?1, λ= 310 nm) is valid in dynamic range (5–200)× 10?6 mol L?1 with detection limit 2.2 × 10?6 mol L?1, i.e. 0.14 μg ml?1. Volumetric determination of copper(II) with standardized dipon solution was used for copper(II) determination at micromolar concentration level without any necessity to sequester interfering metal ions. A sharp end point of titration was detected by UV/VIS spectrophotometry. Both methods were tested on artificial and real samples (spiked mineral water, alloys) and gave satisfactory results without any systematic error. The advantage of both methods is their simplicity, rapidity and no sensitivity to the presence of other metal ions.  相似文献   

5.
Two novel potentiometric azide membrane sensors based on the use of manganese(III)porphyrin [Mn(III)P] and cobalt(II)phthalocyanine [Co(II)Pc] ionophores dispersed in plasticized poly(vinyl chloride) PVC matrix membranes are described. Under batch mode of operation, [Mn(III)P] and [Co(II)Pc] based membrane sensors display near‐ and sub‐Nernstian responses of ?56.3 and ?48.5 mV decade?1 over the concentration ranges 1.0×10?2?2.2×10?5 and 1.0×10?2?5.1×10?5 mol L?1 azide and detection limits of 1.5×10?5 and 2.5×10?5 mol L?1, respectively. Incorporation of both membrane sensors in flow‐through tubular cell offers sensitive detectors for flow injection (FIA) determination of azide. The intrinsic characteristics of the [Mn(III)P] and [Co(II)Pc] based detectors in a low dispersion manifold show calibration slopes of ?51.2 and ?33.5 mV decade?1 for the concentration ranges of 1.0×10?5?1.0×10?2 and 1.0×10?4?1.0×10?2 mol L?1 azide and the detection limits are1.0×10?5 and 3.1×10?5 mol L?1, respectively. The detectors are used for determining azide at an input rate of 40–60 samples per hour. The responses of the sensors are stable within ±0.9 mV for at least 8 weeks and are pH independent in the range of 3.9?6.5. No interferences are caused by most common anions normally associated with azide ion.  相似文献   

6.
In this paper, a novel poly(aminosulfonic acid) modified glassy carbon electrode (PASA/GCE) for the determination of Sudan II was fabricated through electrochemical polymerizat ion. The electrochemical behavior of Sudan II at the modified electrode was studied by cyclic voltammetry. Results show that the modified electrode exhibits excellent electrocatalytic activity toward the electrochemical redox reaction of Sudan II. Under optimal experimental conditions, the oxidation peak current is linearly proportional to the concentration of Sudan II in the ranges of 4.0 × 10?8 to 1.0 × 10?6 mol L?1 and 1.0 × 10?6 to 1.2 × 10?5 mol L?1. The linear regression equations are i pa(A) = 2.87c + 3.74 × 10?6, r = 0.9977 and i pa(A) = 0.78c + 6.11 × 10?6, r = 0.9982, respectively, and the detection limit is 4.0 × 10?9 mol L?1. The novel method shows good recovery, reproducibility and sensitivity for the voltammetric determination of Sudan II in food samples.  相似文献   

7.
《Electroanalysis》2006,18(8):773-778
A sensitive and selective method for the determination of Pb(II) with a zirconium phosphated silica gel (SiZrPH) modified carbon paste electrode has been developed. The measurements were carried out in three steps including an open circuit accumulation following by electrolysis of accumulated Pb(II) at the modified carbon paste electrode and differential pulse voltammetric determination. The analytical performance was evaluated with respect to the carbon paste composition, pH of solution at the accumulation step, pH and concentration of supporting electrolyte, electrolysis potential, accumulation time and electrolysis time. Two linear calibration graphs were obtained in the concentration ranges 2.5×10?9 mol L?1–5.0×10?8 mol L?1 and 5.0×10?8 mol L?1–5.0×10?6 mol L?1 with an accumulation time of 120 s. The detection limit was found to be 3.5×10?10 mol L?1. The effects of potential interfering ions were studied, and it was found that the proposed procedure is free from interferences of common interfering ions such as tin, thallium and etc. The developed method was applied to Pb(II) determination in a wastewater sample.  相似文献   

8.
The behaviour of the vanadium(V) complex with 5-Br-PADAP at a mercury electrode was investigated in HOAcNaOAc. The adsorption phenomena were observed by linear-sweep voltammetry. The mechanism of the electrode reaction was found to be the irreversible reduction of the V(V) in the complex adsorbed on the surface of the electrode to the V(IV) complex with 5-Br-PADAP. In 0.02 mol l?1 HOAc-0.012 mol l?1 NaOAc (pH 4.5) and 1 × 10?6 mol l?1 5-Br-PADAP, the detection limits of linear-sweep adsorption voltammetry and 1.5th-order derivative adsorption voltammetry are 5 × 10?10 and 2.5 × 10?11 mol l?1 , respectively. The method was applied to samples of ore (Geological Deposit).  相似文献   

9.
A simple and sensitive method for the determination of cysteine is reported based on fluorescence quenching and recovery of L-tyrosine. At pH 10, copper(II) reacted with L-tyrosine to form a 1:1 complex that resulted in the quenching of L-tyrosine. However, the quenched fluorescence of L-tyrosine was recovered upon adding cysteine due to the strong affinity between these components. Under the optimized conditions, the recovered fluorescence was linearly proportional to the concentration of cysteine from 6.5?×?10?7 to 4?×?10?5?mol?L?1 with a detection limit of 7.32?×?10?8?mol?L?1, demonstrating high sensitivity for the determination of cysteine. The mechanisms of fluorescence quenching and recovery were characterized and the method was used to determine cysteine in a pharmaceutical product with satisfactory results.  相似文献   

10.
A very simple, highly sensitive and selective spectrophotometric procedure was developed for the determination of copper(II). It is based on the reaction at pH 4–9 between the synthesized acetophenone-p-chlorophenylthiosemicarbazone (A-p-ClPT) and Cu(II) forming a green complex, Cu(II):A-p-ClPT (1:2), that floats quantitatively with oleic acid (HOL) surfactant. It exhibits a constant and maximum absorbance at 600 nm in both aqueous and surfactant layers. Beer’s law is obeyed over the concentration range 0.25–6.35 mg l?1 with a detection limit of 0.021 mg l?1 for a standard aqueous solution of Cu(II) with a concentration of 3.82 mg l?1 (calculated on the basis of 3σ) and molar absorptivities of 5.5 × 103 and 1.3 × 104 mol l?1 cm?1 in aqueous and surfactant layers, respectively. Sandell’s sensitivity was calculated to be 0.244 μg cm?2 and the relative standard deviation (n = 9) was 0.19%. The different analytical parameters affecting the flotation and determination processes were examined. The proposed procedure has been successfully applied to the analysis of Cu(II) in natural waters, certified scrap steel samples and vitamin samples. The results obtained agree well with those samples analyzed by atomic absorption spectrometry (AAS). Moreover, the flotation mechanism is suggested based on some physical and chemical studies on the solid complexes isolated from aqueous and surfactant layers.  相似文献   

11.
Cathodic stripping methods are described for the determination of traces of thiocyanate ions down to 2 × 10-8 mol l-1 and Cu(II) ions down to 1 × 10-8 mol l-1. The method involves electrolytic accumulation of copper(I) thiocyanate on the surface of a hanging mercury drop electrode followed by stripping of the deposit during the cathodic scan. For the determination of thiocyanate, a copper amalgam electrode can be used. Examples of application of the method for the determination of traces of thiocyanate in common salts, in saliva and urine as well as for the determination of copper(II) ions in tap water are described.  相似文献   

12.
Lin Chang  Ting Wu  Fang Chen 《Mikrochimica acta》2012,177(3-4):295-300
We report on a simple and sensitive method for the determination of L-cysteine (Cys). It is based on a redox reaction between the non-fluorescent Cu(II)-calcein complex and Cys which results in fluorescence recovery of calcein. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II). The effect was used to develop a fluorescence enhancement method for the determination of Cys. Under the optimum conditions, the increase in signal intensity is linear in the range from 3.0?×?10?7 to 1.2?×?10?5?mol?L?1, with a correlation coefficient (R) of 0.9978. The limit of detection (3σ) is 4.0?×?10?8?mol?L?1. The relative standard deviation (RSD) in the determination of 11 samples containing 5.0?×?10?6?mol?L?1 of Cys was 3.5%. There is little interference by common ions and other amino acids. The method, which is simple, rapid, and sensitive, was successfully applied to the determination of Cys in human serum samples.
Figure
Calcein is strongly fluorescent in water solution. It could form a non-fluorescent complex with Cu2+. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II).  相似文献   

13.
The proposed determination of thiosulfate is based on the liberation of thiocyanate by the reaction of thiosulfate with mercury(II) thiocyanate and spectrophotometric determination of the thiocyanate with iron(III). The reaction of thiosulfate with mercury(II) thiocyanate is elucidated with reference to a system containing phosphate buffer; the phosphate is shown to participate directly in the reaction, and a balanced chemical equation is given. Optimum conditions are described for the stoichiometric formation of 3 mol of thiocyanate from 1 mol of thiosulfate. The method can be applied to the determination of thiosulfate in the range 3 × 10?6–1.4 × 10?4 M (1.7–78.5 μg thiosulfate in 5 ml).  相似文献   

14.
《Analytical letters》2012,45(16):2607-2619
Abstract

This article describes the quantitative determination of Cu(II) using thermal lens spectrometry. The chromogenic reaction involving Cu(II) and 5-(4-sulphophenylazo)-8-aminoquinoline in alkaline solution was studied in different experimental conditions such as pH, ligand concentration, methanol volume, and presence of interfering ions. A collinear dual beam set-up has been used for direct quantitation in water samples without a pre-concentration step. The optimized conditions provided a linear calibration in the concentration range from 3.0 to 15.0?×?10?7?mol L?1. The detection and quantitation limits were 6.13?×?10?8? and 2.04?×?10?7?mol L?1, respectively. Resultantly, an application to Cu(II) determination in tap water (recovery 99.8–103.3%) and mining (synthetic) wastewater (95.3–98.0%) shows relative SDs ≤ 3.1%. The method is presented as a new alternative for the direct Cu(II) determination in real samples.  相似文献   

15.
For the first time an in situ plated bismuth film electrode has been applied to catalytic adsorptive stripping voltammetry of cobalt in the presence of nitrite. At optimised conditions bismuth film was plated before each measurement for 30 s at ?1.0 V from a sample solution with the added supporting electrolyte and Bi(III) in the form of its complex with tartrate. The calibration graph for Co(II) for an accumulation time of 120 s was linear from 5×10?10 to 1×10?8 mol L?1. The detection limit was 1.1×10?10 mol L?1. The proposed procedure was applied for Co(II) determination in certified water reference material.  相似文献   

16.
Characteristic features of the process of Pb(II) reduction and oxidation at a renewable ceramic ring electrode (RCRE) were studied by stripping voltammetry. The main constituents of the RCRE are: a specially constructed TiN ring electrode, a silver sheet used as silver counter/quasi‐reference electrode and a silicon O‐ring are fastened together in a polypropylene body. The renovation of this electrode is carried out through mechanical removal of solid contaminants and electrochemical activation in the electrolyte which fills the RCRE body. The optimal measurement conditions, composition of supporting electrolyte and procedures of the electrode activation were selected. The measurements were carried out from nondeaerated solutions. As shown on selected examples, RCRE exhibits good performance in underpotential deposition stripping voltammetry (UPD‐SV) applied for the determination of lead(II) in synthetic solutions with and without surfactants and in certified reference materials. The peak current is proportional to the concentration of lead(II) over the range 2×10?9–1×10?7 mol L?1, with a 3σ detection limit of 1×10?9 mol L?1 with an accumulation time of 30 s. The obtained results showed good reproducibility, (RSD=2–5%; n=5) and reliability.  相似文献   

17.
The simple and highly sensitive determination of palladium is based on the reaction between Pd(II)/5-Br-PADAP and Zn(II) DBDTC complexes in 1,2-dichloroethane or toluene at pH 9.7. At 530 nm, the molar absorptivity is about 0.8 × 105 l mol ?1 cm ?1. Beer's law is obeyed in the concentration range 0.1–1.2 μg ml ?1 Pd. Relative standard deviations are 2–5%. Metal ions reacting with either of the organic reagents interfere.  相似文献   

18.
《Analytical letters》2012,45(7):1219-1230
Abstract

An indirect photometric method with a continuous-flow analysis is presented for the determination of trace amounts of vanadium(IV). It is based on the redox reaction of copper(II) with vanadium(1V) in the presence of neocuproine. In the presence of neocuproine, copper(I1) is reduced easily by vanadium(I V) to a copper(1)-neocuproine complex, which shows a n absorption maximum at 454 nm. By measuring t h e absorbance of the complex at this wavelength, vanadium(1V) in t h e range 2×10?6 - 8 × mol dm?5 mol dm?3 can be determined at a rate of 120 samples h?1. The fractional determination of vanadium(1V) and iron(I1) is also studied.  相似文献   

19.
An electroanalytical study of the oxidation processes of umbelliferone and hymecromone at a glassy carbon electrode in micellar solution and emulsified medium by different voltammetric techniques is described. The non-ionic surfactant Triton X-405 in acetate-buffered medium at pH 4.8 was found to be the most suitable. Different ranges of linearity were obtained in the micellar solutions, depending on the technique used; the limits of determination for differential pulse voltammetry (DPV) at a stationary electrode were 2.9×10?6 mol l?1 and 3.3×10?6 mol l?1 for umbelliferone and hymecromone, respectively. In the emulsified medium formed with a mixture of toluene and ethyl acetate (3:2), the oxidation processes yielded similar results. With DPV, linear calibration plots were obtained in the ranges 1.0×10?5–9.0×10?7 mol l?1 umbelliferone and 1.0×10?5–2.0×10?6 mol l?1 hymecromone. The media used are predominantly aqueous so that special reference electrodes and solvent purification are not needed.  相似文献   

20.
《Electroanalysis》2006,18(1):70-76
A lead‐copper film electrode was proposed for Co(II) determination by catalytic adsorptive stripping voltammetry. The electrode was plated in situ and hence the exchange of a solution after plating step was not required. At optimized conditions the calibration graph for Co(II) was linear from 5×10?10 to 2×10?8 mol L?1 for accumulation time of 15 s. The relative standard deviation for Co(II) determination at concentration 5×10?9 mol L?1 was 4.1%. The detection limits for Co(II) were 1.2×10?10 and 1.0×10?11 mol L?1 for an accumulation time of 15 and 180 s, respectively. The method was applied to Co(II) determination in certified reference material and other water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号