首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within an extended Su-Schrieffer-Heeger model including interchain interactions and the extended Hubbard model, the dynamical relaxation of photoexcitations in two coupled conjugated polymer chains is investigated by using a nonadiabatic evolution method. Initially, one of the two chains is photoexcited and the other chain is in the dimerized ground state. Due to the interchain interactions, the electron and/or the hole can be transferred from one chain to the other chain. For weak interchain coupling, the dynamical evolution of the lattice on the photoexcited chain is similar to that found in an isolate single chain case. With interchain interactions increasing, the amplitude of the distortions on the photoexcited chain decreases, and simultaneously, that on the other chain gradually increases. Until stronger interchain coupling, the deformations of the two chains have almost the same amplitude. Besides intrachain polaron-excitons and intrachain oppositely charged polaron pairs as found in single chain case, interchain polaron-excitons and interchain separated charged polaron pairs are obtained. The results show that the yield of interchain products increases and that of intrachain products decreases with interchain coupling increasing. Totally, the yield of charged polarons (including intrachain oppositely charged polaron pairs and interchain oppositely charged polaron pairs) is about 25%, in good agreement with results from experiments.  相似文献   

2.
A new model for analyzing the photophysics of polymer aggregates is introduced taking into account exciton motion along a polymer chain and across polymer chains. Excitonic coupling and vibronic coupling are treated on equal footing using a Holstein-based Hamiltonian represented in a multi-particle basis set. In the HJ-aggregate model the competition between intrachain (through-bond) coupling leading to Wannier-Mott excitons, and interchain (through-space) coupling leading to Frenkel excitons, is studied in detail for two model dimers: one composed of red-phase polydiacetylene (PDA) chains and the other composed of regioregular P3HT chains. The resulting photophysical properties are shown to depend critically on the relative magnitudes of the intrachain and interchain exciton bandwidths. Dominant intraband (interband) coupling favors a photophysical response resembling J-aggregates (H-aggregates). In PDA dimers, where intrachain coupling prevails, the absorption spectrum is dominated by the 0-0 peak, as is characteristic of J-aggregates. The photoluminescence (PL) spectrum displays hybrid character: the ratio of the main (0-0) band to the first vibronic sideband intensities is initially zero at T = 0 K due to the forbidden nature of the 0-0 transition, but then increases with temperature in a manner characteristic of H-aggregates, peaking when kT ≈ ΔE, where ΔE is the interchain splitting. Further increases in temperature result in a decline of the PL ratio, as in a J-aggregate. This remarkable H to J transition is also predicted for the temperature dependence of the radiative decay rate, k(rad). The maximum (peak) rate scales as, k(rad) (max)~(W(intra)/W(inter))(1/2), where W(intra) (W(inter)) is the intrachain (interchain) exciton bandwidth. Hence, when W(intra) is sufficiently larger than W(inter) the dimer displays thermally activated superradiance. In P3HT the intrachain coupling is far weaker than in PDA making the intrachain and interchain couplings comparable in the crystalline phase. Although the absorption spectral line shape is still well-accounted for by the conventional H-aggregate model, the photoluminescence is more sensitive, with H or J behavior tunable by changes in morphology. Long range intrachain order which coincides with weaker interchain interactions induces J-aggregate behavior, while short range intrachain order and the resulting stronger interchain coupling induces H-aggregate behavior. Our predictions neatly account for the H-like dominance exhibited by the PL from spin-cast films and the J-like dominance exhibited by the PL from highly ordered P3HT nanofibers self-assembled in toluene.  相似文献   

3.
4.
The dielectric relaxation properties are considered for polymer networks built from polar macromolecules with the dipole moment directed along the end-to-end chain vector. The viscoeleastic cubic model of a regular network is used. The fixed average volume of a polymer network is ensured by the effective internal pressure. The dynamic models of polymer networks with external and interchain friction are studied. Two cases are considered: (1) polar chains cross-linked in a network at their ends, and (2) a densely cross-linked network with many network junctions per polar chain. The expressions for the autocorrelation functions of the total dipole moment of a network, which determine the dielectric susceptibility, are calculated. The relaxation spectrum of the autocorrelation function consists of two regions: the high-frequency relaxation spectrum of a chain fragment between two neighbouring junctions (intrachain relaxation spectrum) and the lowfrequency interchain relaxation spectrum. The interchain relaxation spectrum is determined by cooperative motions of chains which form a network. The characteristic time of this spectrum for networks of type (1) is the relaxation time of a chain between junctions τmin. For networks of type (2) a second time scale τ1 exists, which corresponds to motions inside the volume occupied by a single long polar chain included in a network. It leads to different time behaviour of the autocorrelation functions for both network models. The existence of only interchain friction in the network model leads to a cut-off of the relaxation spectrum at the time τmax depending on the volume of viscous interchain interactions.  相似文献   

5.
The interchain exchange and interdiffusion in blends of poly(ethylene terephthalate) and poly(ethylene naphthalene-2,6-dicarboxylate) are investigated with reprecipitated commercial samples (M η ~ 104) and samples containing no polycondensation catalyst (M η ~ 103) synthesized in the course of this study. The kinetics of multiblock copolymer formation and gradual reduction of the mean block length in quasi-homogeneous blends were shown to fit a simple theoretical model of a second-order reaction. The increase of the reaction-rate constants on the transition from commercial samples to synthesized ones revealed a significant role of chain ends in interchain exchange. The detected activation energy of the interchange in the absence of catalysts (97 kJ/mol) was noticeably less than that previously reported for the polymer pair under study (120–170 kJ/mol). The obtained data were applied for analysing the interdiffusion between melts of the same polymers accompanied by the interchain exchange. By means of the microinterference method, the interdiffusion in the synthesized samples was shown to be much faster than that in the reprecipitated commercial samples, a result that may be due to the better compatibility of the initial polyesters as their molecular mass decreased. In later stages of the process in both systems, the interpenetration of components was slower than that predicted by Fick’s law, owing to formation of copolymer species that diminished the thermodynamical factor of mixing.  相似文献   

6.
Koo HJ  Whangbo MH  Lee KS 《Inorganic chemistry》2003,42(19):5932-5937
The CrVO(4)-type magnetic oxides MM'O(4) consist of edge-sharing MO(4) octahedral chains condensed with M'O(4) tetrahedra and exhibit a wide variety of magnetic structures. The magnetic properties of these oxides were examined by studying their spin exchange interactions on the basis of spin dimer analysis. The nature and magnitudes of the intra- and interchain spin exchange interactions depend on the square-to-rectangle distortion in the basal planes of the MO(4) chain and on the difference between the M 3d and O 2p orbital energies. The spiral magnetic structures of beta-CrPO(4) and MnSO(4) originate from the pseudohexagonal arrangement of the MO(4) chains and the frustrated interchain antiferromagnetic interactions.  相似文献   

7.
The excited-state deuteron transfer (ESDT) of deuterated 7-hydroxyquinoline (7DQ) along a heterogeneous hydrogen (H)-bonded chain composed of two deuterated alcohol (ROD) molecules having different acidities, as a model system of a proton wire consisting of diverse amino acids, has been investigated. To understand dynamic differences between deuteron transfer and proton transfer, solvent-inventory experiments have been performed with variation of the combination as well as the composition of alcohols in a H-bonded mixed-alcohol chain. Deuteron transfer from the adjacent ROD molecule to the basic imino group of 7DQ via tunneling, which is the rate-determining step, initiates ESDT, and subsequent barrierless deuteron relay from the acidic enolic group of 7DQ to the alkoxide moiety along the H-bonded chain completes ESDT. Whereas the acceleration of the reaction has been observed in excited-state proton transfer because of the accumulated proton-donating abilities of two alcohol molecules in a H-bonded chain by a push-ahead effect, such acceleration is not observed in ESDT. Because the energy barrier of deuteron relay is much higher than that of proton relay due to the low zero-point energy of 7DQ·(ROD)(2) and a deuteron is twice as heavy as a proton, it is hard for a deuteron to pass through the barrier via tunneling. Moreover, both the H-bonding ability and the acidity of ROD molecules are so weak that their deuteron-donating abilities cannot be accumulated at the rate-determining step of ESDT. Consequently, the rate constant of ESDT is determined mostly by the acidity of the ROD molecule H-bonded directly to the imino group of 7DQ.  相似文献   

8.
The dynamic network model taken into account the friction relative to incompressible effective viscous medium (EVM), the hydrodynamic interactions of a network with the EVM, and the interchain friction is considered. Two collective network relaxation spectra (RS) arise. The first RS corresponds to the network motion relative to immobile EVM, the EVM does not take part in this motion. The second RS includes the combined viscous motion of the network and EVM because of long-range hydrodynamic interactions. This RS is finite and narrow for infinitely large network. The symmetry of this motion is in concordance with that of incompressible EVM. The existence of interchain friction leads to the narrowing of both types of relaxation spectra.  相似文献   

9.
The translational and rotational dynamics of the liquid and disordered (solid I) phases of neopentanol are investigated using high-field multinuclear NMR. The extensive line-narrowing of the 1H resonances for solid I is ascribed to the onset of translational diffusion whereas the line-narrowing of the deuteron and carbon-13 signals is dominated by molecular reorientations. The activation energy of the molecular self-diffusion is 34 and 71 kJ mol−1 for the liquid and solid I phases, respectively. The self-diffusion coefficient of solid I is 3.2 × 10−13 m2 s−1 at the melting point.

A thorough analysis of the multinuclear T1 data is presented. The activation energy of the overall tumbling motion in the liquid and solid I phases, obtained from the hydroxyl deuteron T1 data, is 36 and 52 kJ mol−1, respectively. The internal reorientations have a profound effect on the spin-lattice relaxation times of the methyl and methylene groups by reducing the effective correlation time by an order of magnitude relative to the overall tumbling motion in solid I. The long correlation time (22 and 58 ps of liquid and solid neopentanol at the melting point) and high activation energy suggest that the overall tumbling motion in the liquid and disordered phases involves hydrogen-bonded aggregates.  相似文献   


10.
The dynamic mechanical properties of supramolecular associative polymer networks depend on the average number of entanglements along the network‐forming chains, Ne, and on their content of associative groups, f . In addition, there may be further influence by aggregation of the associative groups into clusters, which, in turn, is influenced by the chemical structure of these groups, and again by Ne and f of the polymer. Therefore, the effects of these parameters are interdependent. To conceptually understand this interdependency, we study model networks in which (a) Ne, (b) f , and (c) the chemical structure of the associative groups are varied systematically. Each network is probed by rheology. The clustering of the associative groups is assessed by analyzing the rheological data at the end range of frequency covered and by comparison of the number of supramolecular network junctions with the maximum possible number of binary transient bonds. We find that if the total number of the network junctions, which can be formed either by interchain entanglement or by interchain transient associations, is greater than a threshold of 13, then the likelihood of cluster formation is high and the dynamics of supramolecular associative polymer networks is mainly controlled by this phenomenon. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1209–1223  相似文献   

11.
Total integrated and photon correlation light scattering have been used to study two samples of poly(1,4-phenylene-2,6-benzobisthiazole) (PBT) representing two methods of precipitation to recover the polymer from the polymerization solvent. Some details of the light-scattering instrument are given. It is found that the PBT sample is rodlike, with persistence length of at least 50 nm, but that the postpolymerization processing method influences the state of interchain aggregation. The data are augmented by measurements of freezing-point depression to estimate the degree of protonation of PBT in sulfuric acid, and by measurements of partial specific volume to provide an estimate for the geometric diameter of the chain in solution. The results show a degree of protonation of 2–4 protons per repeating unit, and partial specific volumes that are appreciably smaller than the specific volume determined for the polymers. Similar data and results are reported for poly(1,4-phenyl-ene-2,6-benzobisoxazole) and poly(1,4-phenylene terephthalamide).  相似文献   

12.
An Erratum has been published for this article in Polymers for Advanced Technologies 12(10)2001, 603. Poly(diorganylsilylene)s can be excited within the framework of Si bonds in the polymer backbone as well as within a side group skeleton. An electron transfer from the main chain to a side group or an interchain electron transfer is necessary to form a quasi‐stable ion‐pair. Dissociation of the ion‐pair in the external electric field can be described in terms of the Onsager theory of geminate recombination. The charge carrier transport proceeds predominantly along σ‐delocalized Si backbone with participation of interchain hopping and polaron formation. A model of disordered polarons seems to be adequate to describe the charge carrier transport properties. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
In mature collagen type III the homotrimer is C-terminally cross-linked by an interchain cystine knot consisting of three disulfide bridges of unknown connectivity. This cystine knot with two adjacent cysteine residues on each of the three alpha chains has recently been used for the synthesis and expression of model homotrimers. To investigate the origin of correct interchain cysteine pairings, (Pro-Hyp-Gly)(n) peptides of increasing triplet number and containing the biscysteinyl sequence C- and N-terminally were synthesised. The possibilities were that this origin may be thermodynamically coupled to the formation of the collagen triple helix as happens in the oxidative folding of proteins, or it could represent a post-folding event. Only with five triplets, which is known to represent the minimum number for self-association of collagenous peptides into a triple helix, air-oxidation produces the homotrimer in good yields (70 %), the rest being intrachain oxidised monomers. Increasing the number of triplets has no effect on yield suggesting the formation of kinetically trapped intermediates, which are not reshuffled by the glutathione redox buffer. N-terminal incorporation of the cystine knot is significantly less efficient in the homotrimerisation step and also in terms of triple-helix stabilisation. Compared to an artificial C-terminal cystine knot consisting of two interchain disulfide bridges, the collagen type III cystine knot produces collagenous homotrimers of remarkably high thermostability, although the concentration-independent refolding rates are not affected by the type of disulfide bridging. Since the natural cystine knot allows ready access to homotrimeric collagenous peptides of significantly enhanced triple-helix thermostability it may well represent a promising approach for the preparation of collagen-like innovative biomaterials. Conversely, the more laborious regioselectively formed artificial cystine knot still represents the only synthetic strategy for heterotrimeric collagenous peptides.  相似文献   

14.
Polaron dynamics in a system of two randomly coupled polymer chains is simulated using a nonadiabatic evolution method. The simulations are performed within the framework of the Su-Schrieffer-Heeger model modified to include disordered interchain interactions and an external electric field. By analysing the polaron velocity statistically, we find that the polaron motion is determined by the competition between the electric field and the disordered interchain interactions. Polaron dynamics are classified into two types, weak-coupling dynamics and strong-coupling dynamics. It is found that the strength of interchain interactions is the dominant factor controlling charge propagation in weak-coupling dynamics, whereas the effects of disorder are dominant in strong-coupling dynamics. The charge carriers tend to have higher mobility for stronger interchain coupling, and interchain coupling disorder can be favorable for charge transport depending on the coupling strength and the electric field.  相似文献   

15.
A physical model of series of the conductivity on chain and the interchain conductivitybetween chains is proposed to explain enhanced conductivity of stretched conducting polymers.This model suggests that the enhanced conductivity for stretched conducting polymers might bedue to increasing of the interchain conductivity between chains along the elongation direction afterdrawing processes if the conductivity on chain is assumed much larger than that of the interchainconductivity between chains. According to this model, it is expected that the temperaturedependence of conductivity measured by four-probe method for stretched conducting polymers iscontrolled by a variation of the interchain conductivity between chains with temperature, whichcan be used to explain that a metallic temperature dependence of conductivity for stretchedconducting polymers is not observed although the conductivity along the elongation direction isenhanced by two or three orders of magnitude.  相似文献   

16.
The spontaneous ordering of a three-dimensional polymer system composed of flexible segments with a fixed mean-square length in the presence of local intra- and interchain orientational-deformational interactions was considered. The fixation of the segment chain length on average is possible only during relatively weak interchain interactions or at high temperatures, i.e., in the isotropic state. The three-dimensional model, unlike its two-dimensional version, suggests the existence of the critical point at which a second-order phase transition from the isotropic state to an ordered state takes place. The critical behavior of the multichain model is described by the spherical approximation for an anisotropic Heisenberg ferromagnetic. The dependence of the critical point and the parameters of short- and long-range dipole and quadrupole orientational orders on the chain rigidity and magnitude of interchain interactions was determined. In the isotropic state, orientation correlations of segments decline according to the Ornstein-Zernike law, as in the 3D model of Gaussian subchains without fixation of their mean-square length. In the ordered state, the correlation functions tend to a finite limiting value corresponding to the presence of long-range order, as in the case of the multichain model of rigidchain segments in the strong-order approximation. A comparison of the short-range and long-range orders in the model of chains composed of segments with a fixed mean-square length and undeformable (rodlike) elements in the mean-field approximation, on the one hand, and multichain models, on the other hand, showed their equivalence, especially at high degrees of ordering.  相似文献   

17.
To investigate the interplay between on-chain keto defect and interchain interaction and its consequence on the blue emission of polyfluorene (PF), first- to third-generation dendronized PFs as well as single-fluorenone-unit doped PF (PFN), synthesized by Suzuki polycondensation, were used as model compounds for steady-state and picosecond time-resolved photoluminescence (PL) spectroscopic studies. For PF film, the broad-band green emission did not appear, although severe interchain interaction was observed. For PFN film, the green emission that peaked at approximately 540 nm decayed in a multiphasic manner, suggesting significant heterogeneity in the excitation migration toward the keto center. To further examine the interplay effect, a series of novel dendronized-PF/PFN blend films in a molar ratio of 40:1 fluorene-to-fluorenone unit were studied. With reference to pure PFN film, those of the green emission of the blends showed strong dependence on the order of dendronization, that is, a higher generation resulted in a shorter-lived green emission. These observations are discussed in terms of interchain and/or intersegment interactions between the fluorene segments and the keto defect. It is concluded that the keto unit and the keto-centered, interchain aggregation lead to severe color degradation in a synergistic manner, and that dendronization can effectively minimize the undesirable green emission.  相似文献   

18.
Phase transitions and the development of orientational order are studied for three-dimensional polymer systems with the anisotropy of local intra- and interchain orientational-deformation interactions of chains with the dipole-type potential. In the proposed model of chains composed of elastically deformed segments with a fixed mean-square length (in the modified model of Gaussian subchains), there is a certain critical temperature at which the second-order phase transition from the isotropic state to the orientationally ordered state occurs. The temperature dependences of the parameter of the dipole order for thick films are calculated, and these dependences are compared with the corresponding dependences within the mean-field approximation according to the Ising model for ferromagnetics and within the Langevin continuum model for ferroelectric materials as well as with the experimental data on the thermal depolarization in the films based on the vinylidene fluoride-trifluoroethylene copolymer. The order parameter is calculated as a function of the film thickness (the length of chains) under certain boundary conditions imposed on film ends, and the calculated values are compared with the values predicted by the phenomenological theory and with the experimental data on the polarization distribution in the ferroelectric films based on vinylidene fluoride.  相似文献   

19.
Choi da H  Yoon JH  Lim JH  Kim HC  Hong CS 《Inorganic chemistry》2006,45(15):5947-5952
Two mononuclear complexes [Mn(5-methylpyrazole)4(N3)2] (1) and [Ni(5-methylpyrazole)4(N3)2] (2), as well as a novel one-dimensional coordination polymer [Co(3-methylpyrazole)2(5-methylpyrazole)2(tp)]n (3) (tp = terephthalate), were characterized. The isostructural complexes, 1 and 2, display two-dimensional supramolecular networks formed by hydrogen bonds between the N-H groups of 5-methylpyrazoles and the end N atoms of the azide ligands and additional face-to-face pi-pi interactions of the 5-methylpyrazoles. For 3, tp-bridged one-dimensional chains assisted by intrachain hydrogen bonds among the N-H groups of methylpyrazoles and carboxylate oxygens are connected with the help of interchain C-H...O hydrogen bonds, leading to a two-dimensional structure. The intra- and interchain hydrogen bonds account for the coexistence of two unique coordination forms (5-methylpyrazole and 3-methylpyrazole) of methylpyrazoles in the same coordination sphere. Weak antiferromagnetic interactions coupled with the spin-orbit coupling effect are operative in 3 through the tp ligands.  相似文献   

20.
二维高聚物振动谱的研究   总被引:1,自引:0,他引:1  
聚乙炔和聚苯胺通常由于链间耦合比较弱 ,具有一维特性 .但在增加压力的条件下可以使其链间距b减少 ,当达到与晶格常数a相近的程度时 ,这时应考虑其晶格链间耦合作用 ,它们就具有二维复式晶格结构 ,由此会带来新的物理效应 .本文考虑了由于增压作用可以使高聚物晶格链间耦合作用增强 ,并使链间距b减少 ,当b达到与晶格常数a相比拟时 ,它们可以被看作具有二维晶格结构 .基于这种情况建立了理想的二维复式晶格链模型 ,利用晶格动力学的方法 ,计算其晶格链间及原子次近邻间的相互作用 ,借助计算机计算分别在几种晶格链耦合作用下和不同质量比时的色散关系 ,模拟色散曲线 ,讨论第一布里渊区BrillouinZone(BZ)中格波高对称线上频谱的变化 ,分析了由此会带来的新的物理效应 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号