首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Theoretical model of vibrational interactions in hydrogen-bonded salicylic acid dimer is presented which takes into account the adiabatic couplings between high- and low-frequency O-H and O...O stretching vibrations, resonance interactions between both intermolecular hydrogen bonds and between inter- and intramolecular hydrogen bonds, and Fermi resonance between the O-H stretching fundamental and the first overtone of the O-H in-plane bending vibrations. The model is used for theoretical simulation of the nu(s) stretching bands of salicylic acid and its OD derivative at 300 K. The effect of deuteration is successfully reproduced by our model. Infrared, far infrared, Raman, and low-frequency Raman spectra of the polycrystalline salicylic acid and its deuterated derivative have been measured. The geometry and experimental frequencies are compared with the results of density-functional theory calculations performed at the B3LYP6-31 ++ G**, B3LYP/cc-pVTZ, B3PW916-31 ++ G**, and B3PW91/cc-pVTZ levels. O-H, O-D, and O...O stretching frequencies are used in theoretical simulation of the nu(s) stretching bands.  相似文献   

2.
A theoretical model for vibrational interactions in the hydrogen bonds in molecular crystals with four molecules forming two centrosymmetric dimers in the unit cell is presented. The model takes into account anharmonic-type couplings between the high-frequency N-H(D) and the low-frequency N...O stretching vibrations in each hydrogen bond, resonance interactions (Davydov coupling) between equivalent hydrogen bonds in each dimer, resonance interdimer interactions within a unit cell, and Fermi resonance between the N-H(D) stretching fundamental and the first overtone of the N-H(D) in-plane bending vibrations. The vibrational Hamiltonian, selection rules, and expressions for the integral properties of an absorption spectrum are derived. The model is used for theoretical simulation of the NH stretching bands of 1-methylthymine and its ND derivative at 300 K. The effect of deuteration is successfully reproduced by our model. Infrared, far-infrared, Raman, and low-frequency Raman spectra of 1-methylthymine and its deuterated derivative have been measured. Experimental geometry and frequencies are compared with the results of density functional theory calculations performed at the B3LYP6-311++G**, B3LYP/cc-pVTZ, B3PW916-311++G**, and B3PW91/cc-pVTZ levels.  相似文献   

3.
Theoretical simulation of the νs stretching band is presented for benzoic acid and its OD derivative at 300 K. The simulation takes into account an adiabatic coupling between the high-frequency O–H(D) stretching and the low-frequency intermolecular OO stretching modes, linear and quadratic distortions of the potential energy for the low-frequency vibrations in the excited state of the O–H(D) stretching vibration, resonance interaction between the two hydrogen bonds in the dimer, and Fermi resonance between the fundamental ν OH(D) stretching and the overtone of the δ O–H(D) bending vibrations.

Infrared, far-infarared, Raman and low-frequency Raman spectra of the polycrystalline benzoic acid and its deuterated form have been measured. The geometry and experimental frequencies are compared with the results of our B3LYP/6-311++G** and B3LYP/cc-pVTZ calculations.  相似文献   


4.
Theoretical simulation of the band shape and fine structure of the N-H(D) stretching band is presented for 1-methyluracil and its deuterated derivative taking into account anharmonic coupling between the high-frequency N-H(D) stretching and the low-frequency N...O stretching vibrations, resonance interaction between two equivalent hydrogen bonds in the dimer, anharmonicity of the potentials for the low-frequency vibrations in the ground and excited state of the N-H(D) stretching mode, Fermi resonance between the N-H(D) stretching and the first overtone of the N-H(D) bending vibrations, and electrical anharmonicity. The effect of deuteration has been successfully reproduced by our model calculations. Infrared, far-infrared, Raman, and low-frequency Raman spectra of the polycrystalline 1-methyluracil have been recorded. The geometry and experimental frequencies are compared with the results of harmonic and anharmonic B3LYP6-311++G(**) calculations.  相似文献   

5.
Intermolecular dihydrogen bond O-H···H-Ge in the electronically excited state of the dihydrogen-bonded phenol-triethylgermanium (TEGH) complex was studied theoretically using time-dependent density functional theory. Analysis of the frontier molecular orbitals revealed a locally excited S(1) state in which only the phenol moiety is electronically excited. In the predicted infrared spectrum of the dihydrogen-bonded phenol-TEGH complex, the O-H stretching vibrational mode shifts to a lower frequency in the S(1) state in comparison with that in ground state. The Ge-H stretching vibrational mode demonstrates a relatively smaller redshift than the O-H stretching vibrational mode. Upon electronic excitation to the S(1) state, the O-H and Ge-H bonds involved in the dihydrogen bond both get lengthened, whereas the C-O bond is shortened. With an increased binding energy, the calculated H···H distance significantly decreases in the S(1) state. Thus, the intermolecular dihydrogen bond O-H···H-Ge of the dihydrogen-bonded phenol-TEGH complex becomes stronger in the electronically excited state than that in the ground state.  相似文献   

6.
本研究以苯酚…苯酚、苯酚…苯、苯酚…二苯醚、苯酚…喹啉和苯甲酸…苯甲酸为对象,采用色散校正的密度泛函理论分别研究褐煤中自缔合OH、OH-π、OH-醚O、OH-N和COOH-COOH之间形成的氢键。此外,还研究了氢键供体中取代基(CH3-、CH3O-、OH-、NH2-、COOH-和NO2-)对氢键的影响。对上述复合物进行了几何优化,并计算了能量、Mulliken电荷分布及振动频率。从优化的结构中可以看出上述复合物之间都存在氢键,所有复合物中O-H键键长都比苯酚中自由羟基的长,这表明这些复合物之间存在相互作用。其中,羧酸…羧酸复合物中O-H键的键长最长。此外,通过Mulliken电荷分布可看出上述复合物之间存在电荷转移。基于振动频率分析,所有的O-H键伸缩振动都发生了红移,尤其是羧酸…羧酸和苯酚…喹啉复合物,这可为煤中羟基振动的红外光谱分析提供依据。根据键能不同氢键强度按以下顺序依次递减:COOH-COOH>OH-N > 自缔合OH≈OH-醚O > OH-π,这与振动频率的分析结果一致。此外,不同取代基对氢键作用的影响不同。  相似文献   

7.
The intermolecular dihydrogen bonding in the electronically excited states of the dihydrogen-bonded phenol-BTMA complex in gas phase was theoretically investigated using the time-dependent density functional theory method for the first time. It was theoretically demonstrated that the S(1) state of the dihydrogen-bonded phenol-BTMA complex is a locally excited state, in which only the phenol moiety is electronically excited. The infrared spectra of the dihydrogen-bonded phenol-BTMA complex in ground state and the S(1) state were calculated at both the O-H and B-H stretching vibrational regions. A novel infrared spectrum of the dihydrogen-bonded phenol-BTMA complex in the electronically excited state was found. The stretching vibrational absorption bands of the dihydrogen-bonded O-H and B-H groups are very strong in the ground state, while they are disappeared in the S(1) state. At the same time, a new strong absorption band appears at the C[Double Bond]O stretching region. From the calculated bond lengths, it was found that both the O-H and B-H bonds in the dihydrogen bond O-H...H-B are significantly lengthened in the S(1) state of the dihydrogen-bonded phenol-BTMA complex. However, the C-O bond in the phenol moiety is markedly shortened in the excited state, and then has the characteristics of C[Double Bond]O group. Furthermore, it was demonstrated that the intermolecular dihydrogen bonds in the electronically excited state of the dihydrogen-bonded phenol-BTMA complex are strengthened, since calculated H...H distance is drastically shortened in the S(1) state.  相似文献   

8.
Ultrafast vibrational dynamics of cyclic hydrogen bonded dimers and the underlying microscopic interactions are studied in temporally and spectrally resolved pump-probe experiments with 100 fs time resolution. Femtosecond excitation of the O-H and/or O-D stretching mode gives rise to pronounced changes of the O-H/O-D stretching absorption displaying both rate-like kinetic and oscillatory components. A lifetime of 200 fs is measured for the v=1 state of the O-H stretching oscillator. The strong oscillatory absorption changes are due to impulsively driven coherent wave packet motions along several low-frequency modes of the dimer between 50 and 170 cm(-1). Such wave packets generated via coherent excitation of the high-frequency O-H/O-D stretching oscillators represent a clear manifestation of the anharmonic coupling of low- and high-frequency modes. The underdamped low-frequency motions dephase on a time scale of 1-2 ps. Calculations of the vibrational potential energy surface based on density functional theory give the frequencies, anharmonic couplings, and microscopic elongations of the low-frequency modes, among them intermolecular hydrogen bond vibrations. Oscillations due to the excitonic coupling between the two O-H or O-D stretching oscillators are absent as is independently confirmed by experiments on mixed dimers with uncoupled O-H and O-D stretching oscillators.  相似文献   

9.
This article reports the striking interplay between the molecular structure and the photodissociation dynamics of catechol (a key dihydroxybenzene), identified using a combination of electronic spectroscopy, hydrogen (Rydberg) atom photofragment translational spectroscopy, density functional theory and second order approximate coupled cluster methods. We describe how the non-planar (C(1) symmetry) ← planar (C(s) symmetry) geometry change during S(1) (1(1)ππ*) ←S(0) excitation in catechol, as well as the presence of internal hydrogen bonding, can perturb the photodissociation dynamics relative to that of phenol (a monohydroxybenzene), particularly with respect to O-H bond fission via the lowest dissociative (1)πσ* state. For λ(phot) > 270 nm, O-H bond fission (of the non hydrogen bonded hydroxyl moiety) is deduced to proceed via H atom tunnelling from the photo-prepared 1(1)ππ* state into the lowest (1)πσ* state of the molecule. The vibrational energy distribution in the resulting catechoxyl product changes notably as λ(phot) is tuned on resonance with either the v' = 0, m(2)' = 1(+) or m(2)' = 2(+) torsional levels of the photo-prepared 1(1)ππ* state: the product state distribution is highly sensitive to the degree of OH torsional excitation (m(2)) prepared during photo-excitation. It is deduced that such torsional excitation can be redistributed very efficiently into ring puckering (and likely also in-plane ring stretch) vibrations as the molecule tunnels to its repulsive 1(1)πσ* state and dissociates. These observations can be rationalised by consideration of the photo-prepared nuclear wavefunctions. Analysis of the product vibrational energy distribution also reveals that the O-H bond strength of the non hydrogen bonded O-H moiety in catechol, D(0)(H-catechoxyl) ≤ 27?480 ± 50 cm(-1), ~2500 cm(-1) lower than that of the sole O-H bond in bare phenol. As a consequence, the vertical excitation energy of the 1(1)πσ* state in catechol is reduced relative to that in phenol, yielding a particularly broad distribution of product vibrations for λ(phot) < 270 nm. This study highlights the interplay between molecular geometry and redistribution of vibrational energy during ultraviolet photolysis of phenols.  相似文献   

10.
Intramolecular vibrational energy redistributions of the O-H stretching (nuOH) vibration for the methanol monomer and its water complex, the methanol-water dimer, are investigated by using ab initio full-dimensional classical trajectory calculations. For the methanol monomer, in the high-energy regime of the 5nuOH overtone, the time dependence of the normal-mode energies indicates that energy flowed from the initial excited O-H stretching mode to the C-H stretching mode. This result confirms the experimental observation of energy redistribution between the O-H and C-H stretching vibrations [L. Lubich et al., Faraday Discuss. 102, 167 (1995)]. Furthermore, a lot of dynamical information in the time domain is contained in the power spectra, whose density is given by the Fourier transformation of the total momentum obtained from trajectory calculations. For the methanol-water hydrogen-bonded complex, at the high-energy level of the 5nuOH overtone, the calculated power spectrum shows considerable splitting and broadening, indicating significant energy redistribution through strong coupling between the O-H stretching vibration and other vibrations. It is thus clear that the A-H...B hydrogen-bond formation facilitates energy redistribution subsequent to the vibrational excitation of the hydrogen-bonded A-H stretching mode.  相似文献   

11.
Resonance Raman (RR) and surface-enhanced resonance Raman scattering (SERRS) of 4'-(N,N'-dimethylaminostyryl)-4-propylpyridinium bromide (hemicyanine, HC dye) in acetonitrile solution and on a colloidal silver surface have been investigated. The structure of the dye in the ground (S0) and excited (S1) electronic states was optimized using density functional calculations along with the B3LYP and the configuration interaction with the singlet excitation (CIS) methods, respectively, using the 6-31G basis set. The vibrational frequencies of the molecule were computed at the optimized geometry and compared with the observed Raman bands. A complete normal-mode analysis has been carried out because it is essential for the accurate assignment of the vibrational spectra. From the observed enhancement along various in-plane and out-of-plane vibrations in the SERRS spectrum and from theoretical calculations, it has been inferred that the interaction with the silver surface occurs via the nitrogen lone pair of the pyridyl or the dimethylamino group of the molecule with a tilted orientation. The observed red-shifts in the SERRS spectrum along various vibrations indicate strong interaction (chemisorption) of the HC dye with the silver surface. This is also supported by the presence of a Ag-N stretching vibration at 241 cm(-1). The effect of the dye concentration on the orientation of the molecule is also discussed.  相似文献   

12.
The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C (L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d,p) calculations and DFT (BLYP) calculations with 6-31G(d,p) and 6-31++G(d,p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm(-1). The magnitude of the wavenumber shifts is indicative of relatively strong OH...H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric OH stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.  相似文献   

13.
This work presents a theoretical simulation of νO? H and νO? D band shapes in the polarized infrared spectra of 2‐furoic acid dimer crystals measured at liquid‐nitrogen temperature. The line shapes are studied theoretically within the framework of the anharmonic couplings between low‐frequency hydrogen‐bond vibrations and degenerate excited states of high‐frequency hydrogen vibrations in hydrogen‐bonded dimers and the anharmonic coupling between the first excited state of the fast mode and the harmonics or band combinations of some low‐frequency bending modes, which lead to Fermi resonances.This approach takes into account the adiabatic approximation, the intrinsic anharmonicity of the low‐frequency mode through a Morse potential, Davydov coupling triggered by resonance exchange between the excited states of the fast modes of the two hydrogen bonds involved in the cyclic dimer, and the direct and indirect damping of the fast‐stretching modes of the hydrogen bonds and of the bending modes. The infrared spectral density was calculated within the linear response theory by Fourier transform of the autocorrelation function of the transition dipole moment operator of the fast mode. Numerical results show that mixing of all these effects allows satisfactory reproduction of the main features of the experimental IR line shapes of crystalline H‐ and D‐bonded 2‐furoic acid at liquid‐nitrogen temperature and for different polarizations. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

14.
Investigation of the transmission of magnetic interactions through hydrogen bonds has been carried out for two different benzoic acid derivatives which bear either a tert-butyl nitroxide (NOA) or a poly(chloro)triphenylmethyl (PTMA) radical moiety. In the solid state, both radical acids formed dimer aggregates by the complementary association of two carboxylic groups though hydrogen bonding. This association ensured that atoms with most spin density are separated from one another by more than 15 A. Thus, no competing through-space magnetic exchange interactions are expected in these dimers and, hence, they provide good models to investigate whether noncovalent hydrogen bonds play a role in the long-range transmission of magnetic interactions. The nature of the magnetic exchange interaction and their strengths within similar dimer aggregates in solution was assessed by electron spin resonance (ESR) spectroscopy. In the case of radical NOA, low-temperature ESR experiments showed a weak ferromagnetic interaction between the two radicals in the dimer aggregates (which have the same geometry as in the solid state). In contrast, the corresponding solution ESR study performed with radical PTMA did not lead to any conclusive results, as aggregates were formed by noncovalent interactions other than hydrogen bonds. However, the bulkiness of the poly(chloro)triphenylmethyl radical prevented interdimer contacts in the solid state between regions of high spin density. Hence, solid-state measurements of the alpha phase of PTMA radical provided evidence of the intradimer interaction to confirm the transmission of a weak ferromagnetic interaction through the carboxylic acid bridges, as found for the NOA radical. Moreover, crystallization of the PTMA radical in presence of ethanol to form the beta phase of PTMA radical prevented the dimer formation; this resulted in the suppression of this interaction and provides further evidence of the magnetic exchange mechanism through noncovalent hydrogen bonds at long distances.  相似文献   

15.
We report here the laser induced fluorescence excitation (FE) and dispersed fluorescence (DF) spectra of a 1:1 mixed dimer between 7-azaindole (7AI) and 2-pyridone (2PY) measured in a supersonic free jet expansion of helium. Density functional theoretical calculation at the B3LYP/6-311++G** level has been performed for predictions of the dimer geometry and normal mode vibrational frequencies in the ground electronic state. A planar doubly hydrogen-bonded structure has been predicted to be the most preferred geometry of the dimer. In the FE spectrum, sharp vibronic bands are observed only for excitation of the 2PY moiety. A large number of low-frequency vibronic bands show up in both the FE and DF spectra, and those bands have been assigned to in-plane hydrogen bond vibrations of the dimer. Spectral analyses reveal Duschinsky-type mixing among those modes in the excited state. No distinct vibronic band structure in the FE spectrum was observed corresponding to excitations of the 7AI moiety, and the observation has been explained in terms of nonradiative electronic relaxation routes involving the 2PY moiety.  相似文献   

16.
Femtosecond time-resolved infrared spectroscopy was used to study the vibrational response of riboflavin in DMSO to photoexcitation at 387 nm. Vibrational cooling in the excited electronic state is observed and characterized by a time constant of 4.0 +/- 0.1 ps. Its characteristic pattern of negative and positive IR difference signals allows the identification and determination of excited-state vibrational frequencies of riboflavin in the spectral region between 1100 and 1740 cm (-1). Density functional theory (B3LYP), Hartree-Fock (HF) and configuration interaction singles (CIS) methods were employed to calculate the vibrational spectra of the electronic ground state and the first singlet excited pipi* state as well as respective electronic energies, structural parameters, electronic dipole moments and intrinsic force constants. The harmonic frequencies of the S 1 excited state calculated by the CIS method are in satisfactory agreement with the observed band positions. There is a clear correspondence between computed ground- and excited-state vibrations. Major changes upon photoexcitation include the loss of the double bond between the C4a and N5 atoms, reflected in a downshift of related vibrations in the spectral region from 1450 to 1720 cm (-1). Furthermore, the vibrational analysis reveals intra- and intermolecular hydrogen bonding of the riboflavin chromophore.  相似文献   

17.
The changes in the vibrational characteristics characterizing the dimerization of nitric acid have been investigated by ab initio calculations at the MP2 level, with 6-31G(d,p) and 6-31 + G(d,p) basis sets, and B3LYP/6-31G(d,p) calculations. The most consistent agreement between the computed values of the frequency shifts for the planar fully symmetric structure (2A) and those experimentally observed suggests that this structure is preferred. It was established that the most sensitive to the complexation is the stretching O-H vibration. The values of the frequency shift (-306 cm(-1)) is indicative for the formation of the relatively strong hydrogen bonds. The calculations predict an increase of the infrared intensity of the stretching O-H vibration in the nitric acid dimer more than 26 times.  相似文献   

18.
The binary complexes of water with styrene and fluorostyrene were investigated using LIF and FDIR spectroscopic techniques. The difference in the shifts of S 1 <-- S 0 electronic transitions clearly points out the disparity in the intermolecular structures of these two binary complexes. The FDIR spectra in the O-H stretching region indicate that water is a hydrogen bond donor in both complexes. The formation of a single O-H...pi hydrogen-bonded complex with styrene and an in-plane complex with fluorostyrene was inferred based on the analysis of the FDIR spectra in combination with ab initio calculations. The in-plane complex with fluorostyrene is characterized by the presence of O-H...F and C-H...O hydrogen bonds, leading to formation of a stable six-membered ring. The synergistic effect of O-H...F and C-H...O hydrogen bonds overwhelms the O-H...pi interaction in fluorostyrene-water complexes.  相似文献   

19.
The ultrafast relaxation of the excited O-H stretching vibration is studied by ultrafast infrared-pump/infrared-probe and infrared-pump/Raman-probe spectroscopy. We demonstrate a 200 fs lifetime of the hydrogen-bonded O-H stretching mode in 2-(2'-hydroxy-5'-methyl-phenyl)benzotriazole (TINUVIN P). O-H stretching relaxation occurs through a few major channels that all involve combination and overtone bands of modes with considerable in-plane O-H bending character. In particular, the mode, which contains the largest O-H bending contribution, plays a prominent role for primary processes of intramolecular vibrational energy redistribution. Theoretical calculations of vibrational energy transfer rates based on a Fermi golden rule approach account for the experimental findings.  相似文献   

20.
We study the structure and dynamics of hydrogen-bonded complexes of H2O/HDO and acetone dissolved in carbon tetrachloride by probing the response of the O-H stretching vibrations with linear mid-infrared spectroscopy and femtosecond mid-infrared pump-probe spectroscopy. We find that the hydrogen bonds in these complexes break and reform with a characteristic time scale of approximately 1 ps. These hydrogen-bond dynamics are observed to play an important role in the equilibration of vibrational energy over the two O-H groups of the H2O molecule. For both H2O and HDO, the O-H stretching vibrational excitation relaxes with a time constant of 6.3+/-0.3 ps, and the molecular reorientation has a time constant of 6+/-1 ps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号