首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Practicality of the Kohn-Sham density functional scheme for orbital-dependent functionals hinges on the availability of an efficient procedure for constructing local exchange-correlation potentials in finite basis sets. We have shown recently that the optimized effective potential (OEP) method, commonly used for this purpose, is not free from difficulties. Here we propose a robust alternative to OEPs, termed effective local potentials (ELPs), based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart. The ELP method is applied to the exact-exchange-only problem and shown to be promising for overcoming troubles with OEPs.  相似文献   

2.
We have recently formulated a new approach, named the effective local potential (ELP) method, for calculating local exchange-correlation potentials for orbital-dependent functionals based on minimizing the variance of the difference between a given nonlocal potential and its desired local counterpart [V. N. Staroverov et al., J. Chem. Phys. 125, 081104 (2006)]. Here we show that under a mildly simplifying assumption of frozen molecular orbitals, the equation defining the ELP has a unique analytic solution which is identical with the expression arising in the localized Hartree-Fock (LHF) and common energy denominator approximations (CEDA) to the optimized effective potential. The ELP procedure differs from the CEDA and LHF in that it yields the target potential as an expansion in auxiliary basis functions. We report extensive calculations of atomic and molecular properties using the frozen-orbital ELP method and its iterative generalization to prove that ELP results agree with the corresponding LHF and CEDA values, as they should. Finally, we make the case for extending the iterative frozen-orbital ELP method to full orbital relaxation.  相似文献   

3.
It is shown by the example of Slater's averaged exchange potential that a poor approximation to the optimized effective potential (OEP) can yield a deceptively accurate energy via the conventional Kohn-Sham energy functional. For a trial exchange potential to be correct, its Kohn-Sham energy must coincide with the value obtained by the Levy-Perdew virial relation. Significant discrepancies between Kohn-Sham and the virial exchange energies are found for self-consistent Slater, Becke-Johnson, and effective local potentials (ELPs); their relative magnitudes are used to argue that, as approximations to the exact-exchange OEP, ELPs are the most accurate. Virial energy discrepancies vanish for Yang-Wu OEPs when the orbital and auxiliary basis sets are balanced, and remain surprisingly small for oscillatory OEPs obtained with unbalanced basis sets.  相似文献   

4.
In this paper the authors further develop and apply the direct-mapping density functional theory to calculations of the atomization energies and ionization potentials. Single-particle orbitals are determined by solving the Kohn-Sham [Phys. Rev. A. 140, 1133 (1965)] equations with a local effective potential expressed in terms of the external potential. A two-parametric form of the effective potential for molecules is proposed and equations for optimization of the parameters are derived using the exchange-only approximation. Orbital-dependent correlation functional is derived from the second-order perturbation theory in its Moller-Plesset-type zeroth-order approximation based on the Kohn-Sham orbitals and orbital energies. The total atomization energies and ionization potentials computed with the second-order perturbation theory were found to be in agreement with experimental values and benchmark results obtained with ab initio wave mechanics methods.  相似文献   

5.
Local correlation potentials have been obtained from the nonlocal Brueckner coupled-cluster correlation potentials for the rare-gas atoms He, Ne, and Ar and the CO molecule. It is shown that the local correlation potential can mainly be expressed as a sum of two components: a "pure" correlation part and a relaxation contribution. While the total correlation potentials show an oscillating behavior near the nuclei, indicating the atomic shell structure, their components decrease rather monotonously, with a step structure in case of Ne and Ar. By looking at the determinantal overlap and one-electron properties it has been found that the orbitals obtained from these local potentials form a determinant which very well corresponds with the Brueckner determinant. Thus the previously found closeness between the Hartree-Fock determinant and the exchange-only Kohn-Sham determinant [Della Sala and Gorling, J. Chem. Phys. 115, 5718 (2001)] is confirmed also for the correlated case.  相似文献   

6.
It is commonly believed that the exchange-only optimized effective potential (OEP) method must yield total energies that are above corresponding ground-state Hartree-Fock (HF) energies except for one- and two-electron systems. We present a simple procedure for constructing local (multiplicative) exchange potentials that reproduce exactly the HF energy and density in any finite basis set for any number of electrons. For any finite basis set, no matter how large, there exist infinitely many such OEPs, which questions their suitability for practical applications.  相似文献   

7.
This paper presents an optimized effective potential (OEP) approach based on density functional theory (DFT) for individual excited states that implements a simple method of taking the necessary orthogonality constraints into account. The amended Kohn-Sham (KS) equations for orbitals of excited states having the same symmetry as the ground one are proposed. Using a variational principle with some orthogonality constraints, the OEP equations determining a local exchange potential for excited states are derived. Specifically, local potentials are derived whose KS determinants minimize the total energies and are simultaneously orthogonal to the determinants for states of lower energies. The parametrized form of an effective DFT potential expressed as a direct mapping of the external potential is used to simplify the OEP integral equations. A performance of the presented method is examined by exchange-only calculations of excited state energies for simple atoms and molecules.  相似文献   

8.
The Wu-Yang method for determining the optimized effective potential (OEP) and implicit density functionals from a given electron density is revisited to account for its ill-posed nature, as recently done for the direct minimization method for OEP's from a given orbital functional [T. Heaton-Burgess, F. A. Bulat, and W. Yang, Phys. Rev. Lett. 98, 256401 (2007)]. To address the issues on the general validity and practical applicability of methods that determine the Kohn-Sham (local) multiplicative potential in a finite basis expansion, a new functional is introduced as a regularized version of the original work of Wu and Yang. It is shown that the unphysical, highly oscillatory potentials that can be obtained when unbalanced basis sets are used are the controllable manifestation of the ill-posed nature of the problem. The new method ensures that well behaved potentials are obtained for arbitrary basis sets.  相似文献   

9.
10.
11.
A new method based on linear response theory is proposed for the determination of the Kohn-Sham potential corresponding to a given electron density. The method is very precise and affords a comparison between Kohn-Sham potentials calculated from correlated reference densities expressed in Slater-(STO) and Gaussian-type orbitals (GTO). In the latter case the KS potential exhibits large oscillations that are not present in the exact potential. These oscillations are related to similar oscillations in the local error function δ i (r)=(−ɛ i i (r) when SCF orbitals (either Kohn-Sham or Hartree-Fock) are expressed in terms of Gaussian basis functions. Even when using very large Gaussian basis sets, the oscillations are such that extreme care has to be exercised in order to distinguish genuine characteristics of the KS potential, such as intershell peaks in atoms, from the spurious oscillations. For a density expressed in GTOs, the Laplacian of the density will exhibit similar spurious oscillations. A previously proposed iterative local updating method for generating the Kohn-Sham potential is evaluated by comparison with the present accurate scheme. For a density expressed in GTOs, it is found to yield a smooth “average” potential after a limited number of cycles. The oscillations that are peculiar to the GTO density are constructed in a slow process requiring very many cycles. Received: 24 February 1997 / Accepted: 18 June 1997  相似文献   

12.
The constrained variational Hartree-Fock method for excited states of the same symmetry as the ground state [Chem. Phys. Lett. 287, 189 (1998)] is combined with the effective local potential (ELP) method [J. Chem. Phys. 125, 081104 (2006)] to generate Kohn-Sham-type exact-exchange potentials for singly excited states of many-electron systems. Illustrative examples include the three lowest (2)S states of the Li and Na atoms and the three lowest (3)S states of He and Be. For the systems studied, excited-state ELPs differ from the corresponding ground-state potentials in two respects: They are less negative and have small additional "bumps" in the outer electron region. The technique is general and can be used to approximate excited-state exchange-correlation potentials for other orbital-dependent functionals.  相似文献   

13.
An effective exact-exchange Kohn-Sham approach for the treatment of excited electronic states, the generalized adiabatic connection open-shell localized Hartree-Fock (GAC-OSLHF) method is presented. The GAC-OSLHF method is based on the generalized adiabatic connection Kohn-Sham formalism and therefore capable of treating excited electronic states, which are not the energetically lowest of their symmetry. The method is self-interaction free and allows for a fully self-consistent computation of excited valence as well as Rydberg states. Results for atoms and small- and medium-size molecules are presented and compared to restricted open-shell Hartree-Fock (ROHF) and time-dependent density-functional results as well as to experimental data. While GAC-OSLHF and ROHF results are quite close to each other, the GAC-OSLHF method shows a much better convergence behavior. Moreover, the GAC-OSLHF method as a Kohn-Sham method, in contrast to the ROHF approach, represents a framework which allows also for a treatment of correlation besides an exchange by appropriate functionals. In contrast to the common time-dependent density-functional methods, the GAC-OSLHF approach is capable of treating doubly or multiply excited states and can be easily applied to molecules with an open-shell ground state. On the nodal planes of the energetically highest occupied orbital, the local multiplicative GAC-OSLHF exchange potential asymptotically approaches a different, i.e., nonzero, value than in other regions, an asymptotic behavior which is known from exact Kohn-Sham exchange potentials of ground states of molecules.  相似文献   

14.
15.
The optimization of effective potentials is of interest in density-functional theory (DFT) in two closely related contexts. First, the evaluation of the functional derivative of orbital-dependent exchange-correlation functionals requires the application of optimized effective potential methods. Second, the optimization of the effective local potential that yields a given electron density is important both for the development of improved approximate functionals and for the practical application of embedding schemes based on DFT. However, in all cases this optimization turns into an ill-posed problem if a finite basis set is introduced for the Kohn-Sham orbitals. So far, this problem has not been solved satisfactorily. Here, a new approach to overcome the ill-posed nature of such finite-basis set methods is presented for the optimization of the effective local potential that yields a given electron density. This new scheme can be applied with orbital basis sets of reasonable size and makes it possible to vary the basis sets for the orbitals and for the potential independently, while providing an unambiguous potential that systematically approaches the numerical reference.  相似文献   

16.
Using Kohn-Sham (KS) density-functional theory, we have studied the interaction between various polyaromatic hydrocarbon molecules. The systems range from monocyclic benzene up to hexabenzocoronene (hbc). For several conventional exchange-correlation functionals total potential-energy curves of interaction of the pi-pi stacking hbc dimer are reported. It is found that all pure local density or generalized gradient approximated functionals yield qualitatively incorrect predictions regarding structure and interaction. Inclusion of a nonlocal, atom-centered correction to the KS Hamiltonian enables quantitative predictions. The computed potential-energy surfaces of interaction yield parameters for a coarse-grained potential, which can be employed to study discotic liquid-crystalline mesophases of derived polyaromatic macromolecules.  相似文献   

17.
Some aspects of the adiabatic connection method are studied for two-particle spherically symmetric systems. Ground-state wave functions that are constrained by means of a set of moments to have the same density as a corresponding fully interacting system are obtained for noninteracting or partially interacting systems. Local one-body potentials that support these constrained wave functions are generated using a simple method. We examine an interacting two-particle system with a parameter-dependent one-body potential, which for a particular value of that parameter exhibits an intersection between the (3)S and the (3)P states, whereas the 2s and 2p eigenvalues of the corresponding Kohn-Sham potentials do not intersect along with the total energies. These results show that there do exist cases where occupying the orbitals from below in energy may not lead to the ground state, and that the inherent assumptions behind the adiabatic connection can sometimes be violated.  相似文献   

18.
The random phase approximation for the correlation energy functional of the density functional theory has recently attracted renewed interest. Formulated in terms of the Kohn-Sham orbitals and eigenvalues, it promises to resolve some of the fundamental limitations of the local density and generalized gradient approximations, as, for instance, their inability to account for dispersion forces. First results for atoms, however, indicate that the random phase approximation overestimates correlation effects as much as the orbital-dependent functional obtained by a second order perturbation expansion on the basis of the Kohn-Sham Hamiltonian. In this contribution, three simple extensions of the random phase approximation are examined; (a) its augmentation by a local density approximation for short-range correlation, (b) its combination with the second order exchange term, and (c) its combination with a partial resummation of the perturbation series including the second order exchange. It is found that the ground state and correlation energies as well as the ionization potentials resulting from the extensions (a) and (c) for closed subshell atoms are clearly superior to those obtained with the unmodified random phase approximation. Quite some effort is made to ensure highly converged data, so that the results may serve as benchmark data. The numerical techniques developed in this context, in particular, for the inherent frequency integration, should also be useful for applications of random phase approximation-type functionals to more complex systems.  相似文献   

19.
Most present applications of time-dependent density functional theory use adiabatic functionals, i.e., the effective potential at time t is determined solely by the density at the same time. This paper discusses a method that aims to go beyond this approximation, by incorporating "memory" effects: the derived exchange-correlation potential will depend not only on present densities but also on the past. In order to ensure the potentials are causal, we formulate the action on the Keldysh contour for electrons in electromagnetic fields, from which we derive suitable Kohn-Sham equations. The exchange-correlation action is now a functional of the electron density and velocity field. A specific action functional is constructed which is Galilean invariant and yields a causal exchange-correlation vector potential for the Kohn-Sham equations incorporating memory effects. We show explicitly that the net exchange-correlation Lorentz force is zero. The potential is consistent with known dynamical properties of the homogeneous electron gas (in the linear response limit).  相似文献   

20.
The concept of chemical hardness has been recently adopted in the framework of Kohn-Sham theory as a faithful ab initio measure of pseudopotential transferability. A fully self-consistent hardness theory was developed and employed to evaluate the transferability of semilocal pseudopotentials. Hardness contains most of the relevant physical information determining the transferability of pseudopotentials and is an important step forward with respect to the logarithmic derivative analysis. We discuss the main features of chemical hardness and the relations between chemical hardness and the original definitions of absolute and local hardness. We then apply the new criterion to investigate the transferability of fully nonlocal Kleinman-Bylander pseudopotentials. Hardness conservation allows us to obtain a meaningful comparison between them and the conventional norm-conserving ones and gives us a criterion to improve the pseudopotential transferability of fully nonlocal pseudopotentials by suitably resetting their local part. © 1997 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号