首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The problem of determining minimal representations for anisotropic elastic constitutive equations is proposed and investigated. For elastic constitutive equations in any given case of anisotropy, it is shown that there exist generating sets consisting of six generators and such generating sets are minimal in all possible generating sets. This fact implies that most of the established results for representations of elastic constitutive equations are not minimal and remain to be sharpened. For elastic constitutive equations in some cases of anisotropy, including orthotropy, transverse isotropy, the trigonal crystal class S 6, and the classes C 2mh , m=1, 2, 3,..., etc., representations in terms of minimal generating sets are presented for the first time.  相似文献   

2.
3.
4.
Integral constitutive equations of elastic-plastic materials   总被引:1,自引:0,他引:1  
In this paper the integral constitutive equations of elastic-plastic materials are studied. The endochronic theory can be deduced from this theory. It is shown that the endochronic should be selected compatible with the yield function of the calssical plasticity and this can be considered as a principle of selecting endochronic. Applying this principle the appropriate endochronics of the plastically compressible materials and the orthotropic materials are derived. The second approximate theory of the integral constitutive equation is also discussed in this paper.This paper was reported by the National Natural Science Foundation of China.  相似文献   

5.
6.
7.
In this paper, we are interested in developing constitutive equations for fiber-reinforced nonlinearly viscoelastic bodies, in particular for transversely isotropic nonlinearly viscoelastic solids. It follows from results in the theory of algebraic invariants that constitutive equations for such materials can be expressed in terms of functions of 18 independent invariants associated with deformation and fiber orientation. These invariants are analyzed, and we obtain restrictions such as positivity of some of them.  相似文献   

8.
9.
Materials, such as elastic-plastic, which exhibit distinct regimes of response are usually modeled by different constitutive equations in each regime. The present paper explores a method for the construction of a unified constitutive equation from these separate relations. The main idea is to write this unified equation in an implicit form which contains these separate solutions as non-unique solutions. The form is chosen in order to utilize the notions of branch points and branches. Different solutions, corresponding to constitutive equations for different regimes of response, are then regarded as bifurcations at branch points from the fundamental response. The choice of the appropriate branch at a branch point is governed by a selectivity condition which depends on the nature of the response under consideration. A detailed example is provided for elastic-plastic response, with and without the effect of strain rate dependence.  相似文献   

10.
Various types of instabilities are exposed in this paper for time-strain separable single-integral viscoelastic constitutive equations (CE's). They were distinguished into two groups and defined as Hadamard and dissipative type of instabilities. As for the Hadamard-type, previously obtained criteria are found to be necessary only. They are necessary and sufficient only for thermodynamic stability. Improved, stricter Hadamard stability criteria are described briefly in this paper, and then applied to study of stability of several CE's. It is shown that the Currie potential with the K-BKZ equation and the model proposed by Papanastasiou et al. are Hadamard unstable. In the case of dissipative stability, the necessary and sufficient condition for stress boundedness in any regular flow with a given history, is proved. Then, this criterion was applied to the neoHookean, Mooney, and Yen and McIntire specifications of the general K-BKZ model, to exhibit unbounded solutions. In addition, Larson-Monroe potential which is later proved to be Hadamard unstable but satisfies the above criterion of boundedness, is shown to have unstable decreasing branch in steady simple shear flow. At present, to the authors' knowledge, there is no viscoelastic single-integral CE of factorable type proposed in the literature which can satisfy all the Hadamard and dissipative stability criteria.  相似文献   

11.
Simple rheological equations that describe non-linear viscoelastic phenomena in polymeric liquids have long attracted the attention of many rheologists. Although there are many ways of deriving such equations, only one concept is considered here. This concept is based on the introduction of an internal parameter, the recoverable strain tenson, and arises from a special kinematic study together with the formalism of irreversible thermodynamics. The main part of the paper sets out the theory for a single mode but a multimode extension is demonstrated towards the end and is compared with experimental data. Finally some of the problems that remain unsolved in the theory are discussed.The aim of this paper is to acquaint rheologists with the author's views as the model rheological equations he developed have recently been discussed in the literature without his participation.  相似文献   

12.
This paper develops general invariant representations of the constitutive equations for isotropic nonlinearly elastic materials. Different sets of mutually orthogonal unit tensor bases are constructed from the strain argument tensor by using the representation theorem and corresponding irreducible invariants are defined. Their relations and geometrical interpretations are established in three dimensional principal space. It is shown that the constitutive law linking the stress and strain tensors is revealed to be a simple relationship between two vectors in the principal space. Relative to two different sets of the basis tensors, the constitutive equations are transformed according to the transformation rule of vectors. When a potential function is assumed to exist, the vector associated with the stress tensor is expressed in terms of its gradient with respect to the vector associated with the strain tensor. The Hill’s stability condition is shown to be that the scalar product of the increment of those two vectors must be positive. When potential function exists, it becomes to be that the 3 × 3 constitutive matrix derived from its second order derivative with respect to the vector associated with the strain must be positive definite. By decomposing the second order symmetric tensor space into the direct sum of a coaxial tensor subspace and another one orthogonal to it, the closed form representations for the fourth order tangent operator and its inversion are derived in an extremely simple way.  相似文献   

13.
A Hashin-Shtrikman-Willis variational principle is employed to derive two exact micromechanics-based nonlocal constitutive equations relating ensemble averages of stress and strain for two-phase, and also many types of multi-phase, random linear elastic composite materials. By exact is meant that the constitutive equations employ the complete spatially-varying ensemble-average strain field, not gradient approximations to it as were employed in the previous, related work of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) and Drugan (J. Mech. Phys. Solids 48 (2000) 1359) (and in other, more phenomenological works). Thus, the nonlocal constitutive equations obtained here are valid for arbitrary ensemble-average strain fields, not restricted to slowly-varying ones as is the case for gradient-approximate nonlocal constitutive equations. One approach presented shows how to solve the integral equations arising from the variational principle directly and exactly, for a special, physically reasonable choice of the homogeneous comparison material. The resulting nonlocal constitutive equation is applicable to composites of arbitrary anisotropy, and arbitrary phase contrast and volume fraction. One exact nonlocal constitutive equation derived using this approach is valid for two-phase composites having any statistically uniform distribution of phases, accounting for up through two-point statistics and arbitrary phase shape. It is also shown that the same approach can be used to derive exact nonlocal constitutive equations for a large class of composites comprised of more than two phases, still permitting arbitrary elastic anisotropy. The second approach presented employs three-dimensional Fourier transforms, resulting in a nonlocal constitutive equation valid for arbitrary choices of the comparison modulus for isotropic composites. This approach is based on use of the general representation of an isotropic fourth-rank tensor function of a vector variable, and its inverse. The exact nonlocal constitutive equations derived from these two approaches are applied to some example cases, directly rationalizing some recently-obtained numerical simulation results and assessing the accuracy of previous results based on gradient-approximate nonlocal constitutive equations.  相似文献   

14.
This paper compliments a previous paper, (J. Non-Newtonian Fluid Mech.,9(1981) 147), which discussed new constitutive equations for rapid collisionally maintained flow of granular materials as a non-Newtonian microfluid in which the gradient of microrotation played an important role as a kinematic variable. In this article we discuss another variation of such constitutive equations; one for which we do not consider the effects of gradients of the mean microrotation of grains. Derived are expressions for the dispersive normal and shear stresses for a plane shear rapid flow of a granular material in the presence of intergranular slip and friction. These expressions reduce to classical results if friction is set equal to zero. A graph of the variation of stresses versus the friction factor is also presented which reveals a kind of choking phenomenon at larger values of μk.  相似文献   

15.
Received May 11, 2000 / Published online January 23, 2001  相似文献   

16.
Experimental results on 316 stainless steel, at room temperature, under strain controled axial-torsion loadings, point out a large difference in strengthening between proportional and nonproportional loadings. The maximum difference is produced by 90° out of phase straining. In this paper we discuss the possibility of describing this additional hardening, without any new internal variable, by only modifying the expression for the yield criterion.  相似文献   

17.
18.
The paper elaborates on the statistical interpretation of a class of gradient models by resorting to both microscopic and macroscopic considerations. The microscopic stochastic representation of stress and strain fields reflects the heterogeneity inherently present in engineering materials at small scales. A physical argument is advanced to conjecture that stress shows small fluctuations and strong spatial correlations when compared to those of strain; then, a series expansion in the respective constitutive equations renders unimportant stress gradient terms, in contrast to strain gradient terms, which should be retained. Each higher-order strain gradient term is given a physically clear interpretation. The formulation also allows for the underlying microstrain field to be statistically non-stationary, e.g., of fractal character. The paper concludes with a comparison between surface effects predicted by gradient and stochastic formulations.  相似文献   

19.
We derive expressions for the dilatational properties of suspensions of gas bubbles in incompressible fluids, using a cell model for the suspension. A cell, consisting of a gas bubble centered in a spherical shell of incompressible fluid, is subjected to a purely dilatational boundary motion and the resulting stress at the cell boundary is obtained. The same dilatational boundary motion is prescribed at the boundary of an “equivalent” cell composed of a one-phase, uniformly compressible fluid with unknown dilatational properties. By specifying that the stress at the boundary of the one-phase cell is equal to the stress at the boundary of the two-phase suspension cell, we obtain expressions for the unknown dilatational properties as a function of observable properties of the suspension. The dilatational viscosity of a suspension with a Newtonian continuous phase and the analogous properties for suspensions with non-Newtonian continuous phases are obtained as functions of the boundary motion, volume fraction of gas, and properties of the incompressible continuous phase. Results are presented for continuous phases which are Newtonian fluids, second-order fluids, and Goddard—Miller model fluids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号