首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Applied Mathematical Modelling》2014,38(15-16):4148-4156
In this paper, based on the invariance principle of differential equation, a simple adaptive control method is proposed to synchronize the dynamical networks with the general coupling functions. Comparing with other adaptive control methods, the weighted average of a few nodes’ states is used as target orbit to design controller. To show the effectiveness of proposed method, some numerical simulations are performed.  相似文献   

2.
In this paper, we design an adaptive-feedback controller to synchronize a class of noise-perturbed two bi-directionally coupled chaotic systems with time-delay and unknown parametric mismatch. Based on invariance principle of stochastic time-delay differential equations, some sufficient conditions of adaptive complete synchronization are given. Comparing with other papers, here we consider the effect of internal noise, time-delay and parametric mismatch in the synchronized process. As the illustrative examples, the famous Lorenz system and Rössler system are considered here. In order to validate the proposed scheme, numerical simulations are performed, and the numerical results show that our scheme is very effective.  相似文献   

3.
In this article, by a nonstandard finite-difference method we obtain the general time delayed feedback control numerical discrete scheme for a delayed neural network model. Firstly, the local stability of the equilibria point is discussed according to the Neimark–Sacker bifurcation theory. Then, from the point of view of control, for any step-size, a general time delayed feedback control numerical algorithm is introduced to delay the onset of the Neimark–Sacker bifurcation at a desired point by choosing appropriate control parameters. This controller can deal with the general system that the natural equilibrium cannot be given by analytic expression. Finally, numerical examples are provided to illustrate the theoretical results. The results show that the time delayed feedback numerical scheme is better than a polynomial function time delayed feedback method.  相似文献   

4.
This paper presents an adaptive feedback control scheme for the synchronization of the chaotic system consisting of Van der Pol oscillators coupled to linear oscillators with cubic term when the parameters of the master system are unknown and different with the those of the slave system. Based on the Lyapunov stability theory, an adaptive control law is derived to make the states of two slightly mismatched chaotic systems asymptotically synchronized. This method is efficient and easy to implement. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.  相似文献   

5.
In this paper, the problem of guaranteed cost synchronization for a complex network is investigated. In order to achieve the synchronization, two types of guaranteed cost dynamic feedback controller are designed. Based on Lyapunov stability theory, a linear matrix inequality (LMI) convex optimization problem is formulated to find the controller which guarantees the asymptotic stability and minimizes the upper bound of a given quadratic cost function. Finally, a numerical example is given to illustrate the proposed method.  相似文献   

6.
In this paper, we investigate the synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control. Using a combination of Riccati differential equation approach, Lyapunov-Krasovskii functional, inequality techniques, some sufficient conditions for exponentially stability of the error system are formulated in form of a solution to the standard Riccati differential equation. The designed controller ensures that the synchronization of non-autonomous chaotic systems are proposed via delayed feedback control and intermittent linear state delayed feedback control. Numerical simulations are presented to illustrate the effectiveness of these synchronization criteria.  相似文献   

7.
研究了一类混沌时滞随机神经网络同步控制问题.采用更具一般性的时滞反馈控制器,通过巧妙地构造Lyapunov数,分别得到了均方指数同步和均方渐近同步两个判别准则.仿真例子表明,新准则是有效的.  相似文献   

8.
This work presents chaos synchronization between two different chaotic systems via nonlinear feedback control. On the basis of a converse Lyapunov theorem and balanced gain scheme, control gains of controller are derived to achieve chaos synchronization for the unified chaotic systems. Numerical simulations are shown to verify the results.  相似文献   

9.
Effects of synchronization in a system of two coupled oscillators with time-delayed feedback are investigated. Phase space of a system with time delay is infinite-dimensional. Thus, the picture of synchronization in such systems acquires many new features not inherent to finite-dimensional ones. A picture of oscillation modes in cases of identical and non-identical coupled oscillators is studied in detail. Periodical structure of amplitude death and “broadband synchronization” zones is investigated. Such a behavior occurs due to the resonances between different modes of the infinite-dimensional system with time delay.  相似文献   

10.
This paper investigates the stabilization of three dimensional chaotic systems in a finite time by extending our previous method for chaos stabilization. Based on the finite-time stability theory, a control law is proposed to realize finite-time stabilization of three dimensional chaotic systems. In comparison with the previous methods, the controller obtained by our method is simpler than those. Moreover, the method obtained in this paper is suitable for a class of three dimensional chaotic systems. The efficiency of the control scheme is revealed by some illustrative simulations.  相似文献   

11.
The single input linear feedback control for synchronizing two identical new 3D chaotic flows reported by Li et al. [X.F. Li, K.E. Chlouverakis, D.L. Xu, Nonlinear dynamics and circuit realization of a new chaotic flow: a variant of Lorenz, Chen and Lü, Nonlinear Analysis RWA 10 (4) (2009) 2357-2368] is proposed in this paper. Sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical chaotic systems with unknown parameters is also studied. Based on the Lyapunov stability theory, two kinds of single input adaptive synchronization controllers are designed and the adaptive parameter update laws are developed.  相似文献   

12.
This paper investigates the problem of chaos and hyper-chaos control, and proposes a simple adaptive feedback control method for chaos control under a reasonable assumption. In comparison with previous methods, the present control technique is simple both in the form of the controller and its application. Several illustrative examples with numerical simulations are studied by using the results obtained in this paper. Study of examples shows that our control method works very well in chaos control.  相似文献   

13.
This paper focus on schemes and corresponding criteria for group synchronization in complex dynamical networks consisted of different group of chaotic oscillators. The global asymptotically stable criteria for a linearly or adaptively coupled network are derived to ensure each group of oscillators synchronize to the same behavior. Theoretical analysis and numerical simulation results show that the group synchronization can be guaranteed by enhancing the external coupling strength whenever there are connections or not within the groups under the “same input” condition. All of the results are proved rigorously. Finally, a network with three groups, a scale-free sub-network, a small-world sub-network and a ring sub-network, is illustrated, and the corresponding numerical simulations verify the theoretical analysis.  相似文献   

14.
The Willamowski–Rössler model system is investigated. It has been found that the system can be locked in a special district: stable without oscillation, periodic-1 oscillation, periodic-2 oscillation by the time delayed feedback. Numerical simulation result has also shown that the initial condition can affect the result of chaos controlling.  相似文献   

15.
Synchronization in large ensembles of coupled interacting units is a fundamental phenomenon, which is helpful for the understanding of working mechanisms in neuronal networks, social network, etc. In this paper, we will investigate the synchronization phenomenon in a network model. A feedback control scheme is proposed for the synchronization of the given complex networks. The obtained result indicates that synchronization can be achieved for growing chaotic network model. Method enhance the synchronizability of the given model are given at the same time. Finally, numerical simulations are given to show the effectiveness of obtained results.  相似文献   

16.
Synchronization of a chaotic finance system   总被引:1,自引:0,他引:1  
Synchronization strategies of a three-dimensional chaotic finance system are investigated in this paper. Based on Lyapunov stability theory and Routh-Hurwitz criteria, some effective controllers are designed for the global asymptotic synchronization on different conditions. When the system parameters are known, the hybrid feedback control and a method based on special matrix structure are adopted respectively, to realize the synchronization of the chaotic finance system. When the parameters are unknown, the active control is extended and introduced to realize the synchronization. Numerical simulations show the validity and feasibility of the synchronization schemes.  相似文献   

17.
In this paper, an adaptive controller is designed to ensure robust synchronization of two different chaotic systems with input nonlinearities. For this purpose, a stable sliding surface is defined and an adaptive sliding mode controller is designed to achieve robust synchronization of the systems when the control input is influenced through nonlinearities produced by actuator or external uncertainty recourses. The adaptation law guarantees the synchronization assuming of unknown model uncertainty. Furthermore by adding an integrator and incorporating a saturation function in the control law, the chattering phenomenon caused by the sign function is avoided. The simulation results for synchronization of Chua’s circuit and Genesio systems show the efficiency of the proposed technique.  相似文献   

18.
In this paper, an adaptive sliding mode controller for a novel class of fractional-order chaotic systems with uncertainty and external disturbance is proposed to realize chaos control. The bounds of the uncertainty and external disturbance are assumed to be unknown. Appropriate adaptive laws are designed to tackle the uncertainty and external disturbance. In the adaptive sliding mode control (ASMC) strategy, fractional-order derivative is introduced to obtain a novel sliding surface. The adaptive sliding mode controller is shown to guarantee asymptotical stability of the considered fractional-order chaotic systems in the presence of uncertainty and external disturbance. Some numerical simulations demonstrate the effectiveness of the proposed ASMC scheme.  相似文献   

19.
This work investigates Q-S synchronization of non-identical chaotic systems with unknown parameters and scaling function. The sufficient conditions for achieving Q-S synchronization with a double-desired scaling function of two different chaotic systems (including different dimensional systems) are derived based on the Lyapunov stability theory. By the adaptive control technique, the corresponding parameter update laws are proposed such that the Q-S synchronization of non-identical chaotic systems is to be obtained. Two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

20.
This paper presents a study of multi-objective optimal design of full state feedback controls. The goal of the design is to minimize several conflicting performance objective functions at the same time. The simple cell mapping method with a hybrid algorithm is used to find the multi-objective optimal design solutions. The multi-objective optimal design comes in a set of gains representing various compromises of the control system. Examples of regulation and tracking controls are presented to validate the control design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号