首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our new vacuum arc control technology SADE doubles the high current interruption capability of our conventional axial magnetic field technology. First, we describe the vacuum arc motion behavior recorded by a high speed charge-coupled device video camera. This arc behavior is closely related to axial magnetic field intensity. In particular, it depends on the profile of the externally generated axial magnetic field. The anode spot is likely to move to the highest magnetic field intensity. Second, we describe analytical results for concentration of vacuum arc at the anode side contact surface. This analysis implies the possibility of an ideal magnetic field profile and intensity for vacuum arc control. Finally, we describe experimental results for vacuum arc control compared with the physical and theoretical results mentioned above, and we show a practical electrode configuration for vacuum interrupters and its application in a high current interruption experiment  相似文献   

2.
It is well known that axial magnetic fields (AMFs) can keep vacuum arc in diffuse mode at high current. According to our recent research and other published papers, it has been found that vacuum arc can be maintained in high-current diffuse mode at much higher current if nonuniform AMF is applied, that the axial magnetic field is higher at contact periphery than at center. The influence of spatial distribution of AMF on vacuum arc is mainly studied in this paper. Furthermore, two types of AMF contacts with new structures to generate nonuniform AMF are presented.  相似文献   

3.
Vacuum arc cathode spot grouping and motion in magnetic fields   总被引:1,自引:0,他引:1  
Two of the important vacuum arc phenomena observed when the arc runs in a transverse magnetic field are cathode spot grouping and the cathode spot retrograde motion, i.e., in the anti-Amperian direction. This paper summarizes the main experimental observations and proposes a physical model for spot grouping and spot retrograde motion. The proposed spot motion model take in account the previous theoretical model of the cathode thermal regime and the plasma flow near the cathode surface that is based on two conditions: i) the heat loss in the cathode bulk is relatively small to the heat influx, and ii) the plasma flow in the Knudsen layer is impeded. In the present model, the current per group spot is calculated by assuming that the plasma kinetic pressure is comparable to the self-magnetic pressure in the acceleration region of cathode plasma jet. The model includes equations for the current per spot group, spot velocity dependence on the magnetic field and on the arc current in vacuum, as well as in gas filled arc gap. The calculated currents per spot group and spot velocity increase linearly with the magnetic field and arc current, and this dependencies well agree with previous observations. The cathode spot retrograde motion in short electrode gaps and at atmospheric pressure arcs, and the reversal motion in strong magnetic fields (>1 T) observed by Robson and Engel are discussed. The details of the retrograde motion observed in the last decades including the spot velocity dependence on the electrode gap, roughness, temperature, and material could be understood in the frame of the proposed model.  相似文献   

4.
The plasma jet focusing and voltage distribution in the interelectrode gap of a vacuum arc with a ring anode and subjected to an axial magnetic field were studied theoretically. A two-dimensional model was developed based on the free plasma jet expansion into vacuum, and the steady-state solution of the fully ionized plasma in the hydrodynamic approximation was analyzed. It was found that the imposition of an axial magnetic field reduces the radial expansion of the plasma jet. The characteristic jet angle decreases from about 40° in the zero magnetic field case and approaches a value of about 20° with a 0.02 T magnetic field. The arc voltage consisting of the cathode drop, the plasma voltage drop, and anode sheath drop increased, with the imposition of a magnetic field, and decreased with the anode length. The model was compared to experimental measurements of the vacuum arc voltage behavior in an axial magnetic field, and good agreement was found  相似文献   

5.
By using ferromagnetic material around electrodes to generate strong nonuniform magnetic fields, vacuum arcs can be kept in well-defined diffuse mode or multiple arc mode. As a result, the arc voltage is low and stable, the current is confined in certain areas, and high interrupting ability and small size are achieved. The different arc modes for different electrodes, the arc voltage versus arc current for flat electrodes, horseshoe, and four-pole electrode, and the vacuum arc distribution are measured. The criteria of choice of electrode diameter and electrode distance are given  相似文献   

6.
An arc plasma can present various forms under the influence of an external magnetic field. In this study, a magnetically rotating arc plasma generator has been developed to produce three arc modes, namely rigid arc, distorted arc, and diffuse arc, which are obtained by controlling the gas flow rate. The evolution of these arc modes are experimentally studied and discussed. Results show that, as the gas flow rate increases, the arc mode is first transformed from the rigid to the distorted mode, and then to the diffuse mode. Comparisons show that the location of the arc attachment is a key factor in determining the rigid and distorted modes. The diffuse arc is observed under larger gas flow rates, but the completely diffuse arc can exist only within a narrow range of gas flow rates. Compared to the distorted arc, the diffuse arc has not only better stability but also a wider high‐temperature plasma zone, which indicates that the diffuse mode may be more useful in industry.  相似文献   

7.
When double‐break vacuum circuit breakers (VCBs) interrupt the fault current, the series arc will generate their individual magnetic fields in different breaks. The magnetic field in one break will influence the arc in another break if the magnetic field is strong enough or the two breaks are very close. In this case, an interactive magnetic field effect happens. This field is also called the bias magnetic field (BMF). BMF can cause anode erosion and affect the performance at current zero. The distribution of BMF and the optimal configuration of the double‐break VCBs were obtained by the electromagnetic field simulation using the Ansoft Maxwell software. Based on the simulated magnetic field data, in the experiments, the interaction between the series vacuum arcs in double‐break VCBs was equivalent to the interaction between a single vacuum arc and the magnetic field generated by a Helmholtz coil. A high‐speed CMOS camera was used to record the trajectory of the vacuum arc plasma under different BMFs with different types of contacts. The results show the BMF can increase the arc voltage, and the arc becomes unstable. When the BMF becomes stronger, the arc voltage increases, and the arc becomes more unstable. In addition, for different types of contacts, the development process of the arc and the influence level are different under the same BMF. For a Wan‐type transverse magnetic field (TMF) contact or strong BMF, metal sputtering is evident and anode erosion becomes serious. For a cup‐type axial magnetic field (AMF) contact, the influence of BMF on the series arc plasma in double‐break VCBs is less than that of the Wan‐type TMF contact. The results of this work may be helpful for the design of compact double‐break VCBs.  相似文献   

8.
A simple thermophysical model is proposed for cold electrode erosion in electric arc heaters. The model regards erosion as characterized by an effective enthalpy of electrode material ablation, resulting in heat unbalance between heat supply and heat removal by conduction. Replacing the arc spot by a moving surface heat source, the space-time evolution of the electrode surface temperature is studied in coordinates coupled to the source. Applying heat diffusion equations, we show that the erosion problem can be represented by a system of three simple equations. An experimental coaxial setup, with a magnetically driven arc, has been used for the erosion measurements in copper electrodes. Special thermal experiments were carried out for measuring needed arc spot parameters. A comparison of the model with our own and other experimental data demonstrates a reasonable agreement. The present model reveals the relative significance of the different parameters in the erosion process, and permits us to predict the erosion behavior in cold electrode electric arc heaters in a wide range of parameters  相似文献   

9.
Transverse magnetic field (TMF) contacts drive the vacuum arc moving along the contact surface by producing a magnetic field perpendicular to the arc current flow, which makes the arc energy distribute uniformly and prevents the contact from serious ablation due to local overheating. The characteristics of arc motion between the TMF contacts directly determine the surface temperature distribution and contact erosion. Also, it is closely related to the breaking ability of the contacts. In this paper, the arc motion between spiral‐type contacts was recorded by a high‐speed camera. By analysing the arc voltage and arc images, the characteristics of arc shape transformation in the motion stage under different currents were studied. At the same time, the influence of arc duration and arc characteristics before the motion stage on the arc motion is discussed. It is found that the arc behaviour before the motion stage did influence the shape transformation and range of arc rotation. After entering the motion stage, there was always a rapid transformation process of the arc shape and the arc would return to where it first became constricted after a short movement. After a continuous movement, it might rotate in a small region where the arc stagnated before the motion stage. In addition, the arc behaviour was also related to its duration. When the opening time was varied from 2 to 5 ms, the arc velocity decreased. Meanwhile, it was more likely that multiple transformations of the arc aggregation degree occurred.  相似文献   

10.
周祥曼  张海鸥  王桂兰  柏兴旺 《物理学报》2016,65(3):38103-038103
电弧增材成形常采用单道多层或多道搭接的熔积方式,不同的熔积方式下对应的熔积层表面形貌不同,从而影响电弧的形态及其传热传质过程.本文建立了纯氩保护电弧增材成形的电弧磁流体动力学三维数值模型,以及不同表面形貌的熔积层模型,并在保持阳极与阴极之间距离和熔积电流不变的条件下,通过模拟计算获得增材成形特有的单道和多道搭接熔积条件下的不同表面形貌对应的电弧形态以及相应的温度场、流场、电流密度、电磁力、电弧压力分布.数值模拟结果表明:平面基板上起弧情况下电弧中心具有较高的温度、速度、电流密度以及压强;单道多层熔积情况下熔积层数对电弧的各个参量影响较小;多道搭接熔积情况下电弧呈非对称分布,电弧中心温度较前两者低,电流密度、电磁力和电弧压强的分布偏向熔积层一侧.  相似文献   

11.
A theoretical investigation of the full-circle arc located between two planes is presented. The circular arc shape is due to an applied magnetic field. The basic equations for conservations of mass, momentum, energy, and charge, as well as Maxwell's equations and the equation of state lead to a coupled set of partial differential equations. By means of Green's formula, this set is transformed into a set of integral equations. Using the analytically known Green's function, the system may be solved by an iteration procedure. For a simplified arc model, the quantities of interest are computed: The temperature distribution, the mass flow field, and the external magnetic field necessary to maintain this arc configuration.  相似文献   

12.
超声复合电弧声调控特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
谢伟峰  范成磊  杨春利  林三宝  张玉岐 《物理学报》2015,64(9):95201-095201
超声复合电弧作为一种新的焊接热源, 在电弧焊接过程中可利用超声实现对熔融金属的深度处理, 但是超声与电弧等离子体间相互作用机理还不清晰, 这成为阻碍该技术工程应用的关键问题. 本文通过实验与相应理论针对外加超声场对焊接电弧调控特性进行了研究. 为说明电弧特性, 针对试验中高速摄像采集的电弧图片进行了处理. 对比未加超声情况, 超声复合电弧受内外声场共同作用等离子体拘束程度明显提高, 电弧亮度增强, 弧柱高温区范围扩展至阳极, 中间粒子出现团聚并以一定频率上下抖动. 通过改变超声激励电流大小和声发射端高度, 电弧结构产生显著变化, 在谐振点附近, 电弧挺直度最强, 脉动频率最大. 试验结果显示通过外加超声可以达到对焊接电弧热等离子体调控的目的. 最后结合波动方程和二维声边界元模型, 分析了电弧内部声传播过程以及声场结构对等离子体粒子的作用规律, 这为进一步理解超声对电弧的调控机理打下良好基础.  相似文献   

13.
As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.  相似文献   

14.
利用光学成像系统观察到了磁旋转弧等离子体实验中的电弧电压突变现象,电弧电压突变的范围约在40~100V之间。实验结果表明,电弧电压的变化与电弧弧长的变化密切相关。  相似文献   

15.
It is shown that the fraction of multiply charged metal ions generated in a vacuum arc discharge plasma grows substantially in a high magnetic field. This effect was observed for more than 30 different cathode materials. A relation is established between growth of the mean charge of the ions and increases in the burning voltage of the arc. It is demonstrated that the burning voltage of the vacuum arc can be ultimately increased to 160 V. Zh. Tekh. Fiz. 68, 39–43 (May 1998)  相似文献   

16.
The cup-shaped transverse magnetic field (TMF) contacts contain radial components and tangential components in the TMF generated when the current is interrupted. The tangential force generated by the radial magnetic field component drives the vacuum arc to rotate, and the tangential magnetic field component generates a radial force that causes the vacuum arc to move radially outward. In this paper, in order to study the influence of the arc force direction on the arc characteristics, the influence of the contact structure parameters such as the inclination of the inner wall on the arc force direction is simulated, and the breaking tests of different levels of current are carried out on the contact with different structure parameters. It is found that the direction of the Lorentz force has a significant effect on the breaking characteristics of the current, and the tangential and radial force components have varying degrees of influence on the motion characteristics of the arc during the start process and the metal droplet splashing.  相似文献   

17.
At atmospheric pressure, an intensified charge-coupled device (ICCD) camera with a narrow-band filter is used to capture the unsaturated images of a magnetically rotating arc. Comparison of its configurations with different arc current and external axial magnetic field (AMF) strength shows that the strong electromagnetic force may impel the arc to diffuse. Under the fully diffuse mode, the plasma is distributed throughout the electrode gap and no anode attachment can be seen in the cross-section of the torch. The fully diffuse plasma runs more steadily and its intensity distribution is more uniform, while its voltage fluctuation is reduced significantly. Using a commercial CFD (computational fluid dynamics) code FLUENT, the fluid flow and heat transfer of the fully diffuse plasma in an assumed magnetron torch have been simulated for qualitatively discussing the AMF effects. Numerical results show that the AMF significantly impels the plasma to retract axially and expand radially. As a result, the plasma intensity distribution on the cross section of the torch gets to be more uniform.  相似文献   

18.
The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode arc investigated. The arc voltage Va is measured with a fixed arc current for an anode diameter of 40 mm. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc when the anode hole diameter is 40 mm. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field  相似文献   

19.
We consider far from equilibrium heat transport in chaotic billiard chains with noninteracting charged particles in the presence of nonuniform transverse magnetic field. If half of the chain is placed in a strong magnetic field, or if the strength of the magnetic field has a large gradient along the chain, heat current is shown to be asymmetric with respect to exchange of the temperatures of the heat baths. Thermal rectification factor can be arbitrarily large for sufficiently small temperature of one of the baths.  相似文献   

20.
为了了解纵向磁场下的电弧运动过程,建立了真空灭弧室的3维仿真模型。采用PIC模拟方法对12 kV灭弧室内的电磁场、电弧运动特性进行计算仿真。通过改变触头间距、屏蔽罩尺寸和触头开槽宽度,研究了灭弧室内的电场、磁场分布;对不同触头间距下随时间变化的电弧运动过程和触头表面的电弧分布情况进行了模拟计算。计算结果表明:在真空灭弧室中适当设置屏蔽罩,可有效改善灭弧室内的电场分布;触头铜基上的开槽宽度对磁场会产生影响,宽度越大,磁场强度越大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号