首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 709 毫秒
1.
Long-Term Creep of Hybrid Aramid/Glass-Fiber-Reinforced Plastics   总被引:4,自引:0,他引:4  
The results of experimental investigation of the long-term creep of SVM aramid fibers, EDT-10 epoxy resin, aramid-epoxy FRP (fiber-reinforced plastics), glass-epoxy FRP, and aramid/glass-epoxy hybrid FRP with different volume fractions of aramid and glass fibers are presented. The long-term tests were continued for 50,000 h (5.7 years). A structural approach for predicting the long-term creep from the properties and content of the components is considered. The effect of hybridization (partial replacement of the aramid fibers by glass fibers) on the inelastic deformation of hybrid FRP is discussed. The redistribution of stresses in the components during long-term creep of the hybrid composites is analyzed.  相似文献   

2.
The conditions of fabrication and the physicomechanical properties of glass-reinforced plastics based on polysulfone combined in different ratios with epoxy resin and Rolivsan were investigated. It was found that realization of the strength of the fibers in glass-reinforced plastics based on three types of binders and mixtures of them at room temperature is approximately the same. The lower strength of glass-reinforced plastics based on polysulfone is determined by the lower concentration of fibers. Modification of thermosetting plastics with polysulfone significantly increases (by 5–8 times) the specific energy of delamination of the glass-reinforced plastics G1c, which should be manifested by an increase in their crack resistance and other operating characteristics. Modification of ED-20 with polysulfone and polysulfone with Rolivsan significantly increases the glass transition temperature of the polymer and affects the character of the temperature curves of the strength of the glass-reinforced plastics.Institute of Chemical Physics, Russian Academy of Sciences, Moscow. D. I. Mendeleev Russian Chemical Technological University, Moscow. Translated from Mekhanika Kompozitnykh Materialov, No. 1, pp. 111–117, January–February, 1996.  相似文献   

3.
The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50–1000 sec–1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.Translated from Mekhanika Kompozitnykh Materialov, Vol. 31, No. 6, pp. 776–782, November–December, 1995.Presented at the Ninth International Conference on the Mechanics of Composite Materials (Riga, October, 1995).  相似文献   

4.
A mathematical model for determining the effective elastic properties and describing the processes of inelastic deformation and damage accumulation of unidirectional fiber-reinforced composites with tetragonal and hexagonal structures is developed. A comparative analysis of the effective elastic moduli of glass, boron, organic, and carbon unidirectional plastics shows that, if the fiber volume fraction does not exceed 0.5, the effective elastic properties calculated by the models presented give closely related results. The calculation results for nonlinear fields of deformation and failure are presented and the limiting strength surfaces of fibrous glass plastics with hexagonal and tetragonal structures are obtained for different transverse loading paths. It is found that the structure of a composite affects significantly its strength properties.Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000).Perm' State Technical University, Perm', Russia. Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 4, pp. 455–464, July–August, 2000.  相似文献   

5.
The effective deformative characteristics of spatially reinforced composites made by spatial braiding along the generatrices of a one-sheet hyperboloid are analyzed. The geometrical relationships determining the structure of a unit cell of a braided composite are derived. The effective thermoelastic characteristics are calculated by the method of orientational averaging. The dependences of the bending and torsional stiffnesses of thick-walled cylindrical rods — made by the method suggested and by winding — on the braiding/winding angle are compared. The numerical estimations are given for rods made of carbon (CFRP) and aramid (AFRP) epoxy plastics. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompzitnykh Materialov, Vol. 36, No. 3, pp. 341–354, May–June, 2000.  相似文献   

6.
Solutions of a rare-earth modifier (RES) and the epoxy chloropropane (ECP) grafting modification method are used for the surface treatment of F-12 aramid fibers. The effects of RES concentration on the interlaminar shear strength (ILSS) of F-12 aramid fiber/epoxy composites are investigated in detail, and the fracture surfaces of ILSS specimens are analyzed by SEM. It is shown that the RES surface treatment is superior to the ECP grafting treatment in promoting the interfacial adhesion between aramid fibers and the epoxy matrix. However, the tensile strength of single fibers is almost unaffected by the RES treatment. The optimum ILSS is obtained at a 0.5 wt.% content of rare-earth elements.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 2, pp. 265–272, March–April, 2005.  相似文献   

7.
Reinforcing units, FRP, of unidirectional fiber composites for concrete have elastic behavior up to tensile failure. For safety reasons an elongation of 3% at maximum load is usually required for the reinforcement. Ductile behavior with the necessary elongation and stress hardening could be obtained with braided fiber strands around a core of foam plastic, thin glass fiber cylindrical shell, or unidirectional carbon fibers. Braids around a porous core reveal the ductility when epoxy resin breaks up and collapse of core enables the braids to rotate. The same seems to happen at that cross section, where carbon fiber core breaks in tension. The best result is obtained using a cylindrical glass fiber reinforced core shell surrounded with aramid fiber braid.Presented at the Ninth International Conference on the Mechanics of Composite Materials, Riga, October, 1995.Division of Building Materials, Chalmers University of Technology, S412 96 Göteborg, Sweden. Institute of Polymer Mechanics, Latvian Academy of Sciences, Riga, LV-1006 Latvia. Published in Mekhanika Kompozitnykh Materialov, Vol. 32, No. 2, pp. 167–179, March–April, 1996.  相似文献   

8.
Basalt fibers are efficient reinforcing fillers for polypropylene because they increase both the mechanical and the tribotechnical properties of composites. Basalt fibers can compete with traditional fillers (glass and asbestos fibers) of polypropylene with respect to technological, economic, and toxic properties. The effect of technological parameters of producing polypropylene-based basalt fiber-reinforced plastics (BFRPs) by combined extrusion on their mechanical properties has been investigated. The extrusion temperature was found to be the main parameter determining the mechanical properties of the BFRPs. With temperature growth from 180 to 240°C, the residual length of the basalt fibers in the composite, as well as the adhesive strength of the polymer-fiber system, increased, while the composite defectiveness decreased. The tensile strength and elastic modulus increased from 35 to 42 MPa and 3.2 to 4.2 GPa, respectively. At the same time, the growth in composite solidity led to its higher brittleness. Thus, a higher temperature of extrusion allows us to produce materials which can be subjected to tensile and bending loads, while the materials produced at a lower temperature of extrusion are impact stable. The effect of the gap size between the extruder body and moving disks on the mechanical properties of the BFRPs is less significant than that of temperature. An increase of the gap size from 2 to 8 mm improves the impregnation quality of the fibers, but the extruder productivity diminishes. The possibility of controling the properties of reinforced polypropylene by varying the technological parameters of combined extrusion is shown. The polypropylene-based BFRPs produced by the proposed method surpass the properties of glass and asbestos fiber-reinforced plastics.Submitted to the 10th International Conference on Mechanics of Composite Materials (Riga, April 20–23, 1998).Ukrainian State University of Chemical Technology, Dnepropetrovsk, Ukraine. Translated from Mekhanika Kompozitnykh Materialov, Vol. 33, No. 6, pp. 845–850, November–December, 1997.  相似文献   

9.
10.
为了研究柔性纤维织布的抗爆性能,通过数值模拟的方法对芳纶纤维织布在爆炸冲击下的响应与失效行为进行了分析。对国产芳纶纤维织布H1000D-AP220进行了力学性能试验,建立了柔性平纹织布的本构模型和爆炸冲击数值分析模型,对不同厚度不同铺层角度织布进行了爆炸冲击数值分析,获得了织布在不同爆炸载荷下的动态响应和失效模式。结果表明,织布在爆炸冲击载荷下主要表现为中心撕裂破孔和简支边界处拉伸撕裂2种典型的失效模式,并伴有明显褶皱,宽度方向出现织布向内侧收缩翻转现象;相比于中间层织布,迎爆面和背爆面吸能较多;在计算分析中改变了织布的层叠角度,获得了更好的抗爆效果。  相似文献   

11.
The relationship between the strength (σc) of unidirectional fiber-reinforced plastics in different stressed states and the interfacial strength of their components is investigated. The shear adhesive strength (τ0) of fiber—matrix joints determined by the pull-out technique is used as a measure of the interfacial strength. To obtain the correlation curves betweenσc andτ0, the experimental results are used, where both the plastic and adhesive strength change under the influence of a single factor. In this case, such factors are the fiber surface treatment, nature and composition of polymer matrices, and test temperature. It is shown that the strength of the glass, carbon, and boron plastics increases practically linearly with increased interfacial strength. Such a behavior is observed in any loading conditions (tension, shear, bending, and compression). Sometimes, a small (10–20%) increase in the adhesive strength induces a significant (50–70%) growth in the material strength. Therefore, the interface is the “weak link” in these composites. The shape of theσcτ0 curves for composites based on the high-strength and high-modulus aramid fibers and different thermoreactive matrices depends on the nature of the fiber and the type of stress state. In many cases, the composite strength does not depend on the interfacial strength. Then, the fiber itself is the “weak link” in these composites. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Translated from Mekhanika Kompozitnykh Materialov, Vol. 36, No. 3, pp. 291–304, May–June, 2000.  相似文献   

12.
The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed. Russian translation publeshed in Mekhanika Kompozitnykh Materialov, Vol. 42, No. 6, pp. 729–738, November–December, 2006.  相似文献   

13.
Fiber reinforced plastics such as carbon fiber-reinforced composites are typically characterized by their high siffness to weight ratio making them particularly attractive in lightweight construction. In addition, the architecture of these materials means that the correct modelling of their orthotropy is very important. In this work, volume averaged stress-strain responses are generated from a micro representative volume element (RVE). A nonlinear macro constitutive material model accounting for anisotropic plasticity is proposed. The model is fitted and compared to the micro stress-strain response. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The elastic and strength characteristics of unidirectional carbon plastics have been studied, based on carbon fibers, whiskerized with fiber crystals of silicon nitride prepared from the gaseous phase and titanium dioxide from an aerosol. The advantages of these composites and glass textolites based on satin-type fabrics whiskerized with fiber crystals of aluminum nitride and titanium dioxide over the usual carbon and glass plastics are demonstrated.All-Union Scientific-Research Institute of Aviation Materials. Institute of Polymers Mechanics, Academy of Sciences of the Latvian SSR, Riga. Translated from Mekhanika Polimerov, Vol. 9, No. 3, pp. 492–501, May–June, 1973.  相似文献   

15.
提出了适用于复杂梁结构损伤检测的子段模态应变能法SSEM(subsectionstrainenergymethod),并分析了该方法的适用性条件.通过对变截面梁的有限元计算,以及对纤维增强复合材料风机叶片缩比模型的试验分析,验证了SSEM方法确定的结构损伤指标对损伤准确定位的可靠性.该基于振动的变刚度复杂梁结构的损伤检测方法,可应用于工程实际中梁和类梁整体结构的损伤检测.  相似文献   

16.
The interlaminar fracture and the low-velocity impact behavior of carbon/epoxy composite materials have been studied using width-tapered double cantilever beam (WTDCB), end-notched flexure (ENF), and Boeing impact specimens. The objectives of this research are to determine the essential parameters governing interlaminar fracture and damage of realistic laminated composites and to characterize a correlation between the critical strain energy release rates measured by interlaminar fracture and by low-velocity impact tests. The geometry and the lay-up sequence of specimens are designed to probe various conditions such as the skewness parameter, beam volume, and test fixture. The effect of interfacial ply orientations and crack propagation directions on interlaminar fracture toughness and the effect of ply orientations and thickness on impact behavior are examined. The critical strain energy release rate was calculated from the respective tests: in the interlaminar fracture test, the compliance method and linear beam theory are used; the residual energy calculated from the impact test and the total delamination area estimated by ultrasonic inspection are used in the low-velocity impact test. Results show that the critical strain energy release rate is affected mainly by ply orientations. The critical strain energy release rate measured by the low-velocity impact test lies between the mode I and mode II critical strain energy release rates obtained by the interlaminar fracture test. Submitted to the 11th International Conference on Mechanics of Composite Materials (Riga, June 11–15, 2000). Published in Mekhanika Kompozitnykh Materialov, Vol. 36, No. 2, pp. 195–214, March–April, 2000.  相似文献   

17.
The problems of hardening of aramid-fiber-reinforced (ARF) epoxy plastics during thermomagnetic treatment are considered. The basic results of experimental investigations of the effect of weak magnetic fields on the structure and properties of epoxy materials and on the thermohardening conditions of various ARF plastics are presented. It is found that the physicomechanical properties of ARF textolites, unidirectional aramid-fiber-filled (AFF) plastics, and cylindrical shells improve as a result of treatment in stationary and rotating magnetic fields.  相似文献   

18.
It has been established by investigating the effect of common mineral powder fillers on the rate and depth of resin cure that such additions may have an inhibiting or catalytic influence on the hardening process, depending on their nature and method of preparation. The fillers which catalyze the hardening process increase the strength and heat resistance of the cured plastics. When introduced in small amounts into resins used as binders for unsized glass fibers, these fillers equalize the rate and depth of cure in the resin layers, thus increasing the strength and heat stability of glass-reinforced plastics.Mekhanika Polimerov, Vol. 1, No. 5, pp. 58–65, 1965  相似文献   

19.
It is shown experimentally that the strength of glass-reinforced plastics is determined by the properties of the resin close to the fibers; these depend on the structure and chemical composition of the fiber surface. A study is made of the effect of modification of the glass fiber on curing conditions in the layer next to the fiber for a number of resins (K9 silicone resin, ED-6 epoxy resin, polyacrylate-911, and furfural PF resin).Mekhanika polimerov, Vol. 1, No. 1, pp. 26–35, 1965  相似文献   

20.
Photoelastic stress analysis is used to demonstrate the effect of coupling agents on the residual microstresses, i.e., the stresses that develop at near the glass-resin interface during the curing of polyester and epoxy glass-reinforced plastics and, as a rule, remain throughout the life of the product. Coupling agents of different chemical composition applied to the surface of the glass fibers have different effects on the components of the state of stress and thus can act as a powerful regulating factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号