首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The dielectric constant (′) and dielectric loss (tan δ) for hexaferrites BaCo2−xZnxFe16O27 have been studied as a function of frequency (f), temperature (T) and composition (x). The experimental results indicate that ′ and tan δ above the relaxation frequency only decrease as the frequency increases and as the temperature decreases. Tan δ shows the dielectric relaxation at certain critical frequencies which rise as temperature increases. The activation energy for the dielectric relaxation (ED), ′, and tan δ are found to be minimum for x = 0.8.  相似文献   

2.
The phase equilibria around YBa2Cu3O7−x (123) and YBa2Cu4O8 (124) phases at low oxygen partial pressure (1 atm) were investigated by X-ray diffraction and thermal analysis. The coexistence of 123 and 124 phase was confirmed under 1 atm oxygen pressure. By using the high temperature X-ray diffraction method, the univariant reaction YBa2Cu3O7−x+Cu2OY2BaCu2O2+O2 was identified. The oxygen partial pressure dependence of several univariant reactions has been investigated and the existence of two invariant reactions of L+O2YBa2Cu3O7−x+ BaCuO2+CuO+Cu2O and L+Y2BaCuO5+O2YBa2Cu3O7−x+CuO+Cu2O was deduced to occur at 1103 K under 0.0032 atm O2 and at 1143 K under 0.0085 atm O2, respectively.  相似文献   

3.
The electrical conductivity of the LaY1−xInxO3 (x=0.0–0.7) system has been studied from the viewpoint of crystal chemistry. The high temperature form of LaYO3 (x=0.0) was ascertained to be the Sm2O3-type (B-type rare earth) structure, not perovskite-type one. The X-ray diffraction (XRD) experiments revealed that the samples with x=0.05 and 0.10 were the mixed phase of Sm2O3-type and perovskite-type structure, and changed to perovskite phase in the range of x0.20. From oxygen partial pressure dependence of the electrical conductivity, it was found that both the Sm2O3-type and the perovskite-type single phases showed hole conduction, but the mixed phase did oxide-ion one. The electrical conductivity of the LaY1−xInxO3 (x=0.0–0.7) system increased with increasing x, and showed the maximum value in the range of x=0.05–0.10, and then decreased with increasing x. The occurrence of oxide-ion conduction was discussed from the viewpoint of lattice distortion in the mixed phase.  相似文献   

4.
Pr concentration dependence of the superconducting transition temperature Tc in the Ho1−xPrxBa2Cu3O7−δ system is determined from measurements of DC electrical resistance. This dependence coincides with that for the parallely studied Y1−xPrxBa2Cu3O7−δ reference system. Both systems have the same value of the critical concentration xc=0.58, in accordance with nearly equal ionic radii of Ho3+ and Y3+ ions. It has been shown that the Tc(x) curve can be described with a single mechanism based on a decreasing number of sheet holes trapped by PrIV-ions, if one takes also into account that the number of these ions changes with x.  相似文献   

5.
The growth of epitaxial InBixAsySb(1−xy) layers on highly lattice mis-matched semi-insulating GaAs substrates has been successfully achieved via the traditional liquid phase epitaxy. Orientation and single crystalline nature of the film have been confirmed by X-ray diffraction. Scanning electron micrograph shows abrupt interface at micrometer resolution. Surface composition of Bi(x) and As(y) in the InBixAsySb(1−xy) film was measured using energy dispersive X-ray analysis and found to be 2.5 and 10.5 at.%, respectively, and was further confirmed with X-ray photoelectron spectroscopy. Variation of the composition with depth of the film was studied by removing the layers with low current (20 μA) Ar+ etching. It was observed that with successive Ar+ etching, In/Sb ratio remained the same, while the As/Sb and Bi/Sb ratios changed slightly with etching time. However after about 5 min etching the As/Sb and Bi/Sb ratios reached constant values. The room temperature band gap of InBi0.025As0.105Sb0.870 was found to be in the range of 0.113–0.120 eV. The measured values of mobility and carrier density at room temperature are 3.1×104 cm2 V−1 s−1 and 8.07×1016 cm−3, respectively.  相似文献   

6.
The a.c. conductivity behaviour in the 20–300 K temperature range has been investigated for (Ag2S)x(AgPO3)1−x and (Ag2SO4)x(AgPO3)1−x glasses at various salt contents (x). The temperature dependence at selected frequencies in the radioand micro-wave region displays several relaxational contributions which are indistinct in the frequency domain. The low temperature experimental data are discussed and a proposed ‘new universality’ has been examined.  相似文献   

7.
The specific heats of Sm1+xBa2−xCu3Oy solid solution of orthorhombic and tetragonal structure were measured in the temperature range 80–300 K. The data were analyzed in the framework of the Debye model with dilatation correction. The tendency to lower the high-temperature limit of the Debye temperature, θHTD, with the oxygen deficiency was noticed. In contrast, the increase of Sm substitution causes a rise of θHTD. The temperature dependence θD(T) was calculated for each compound from the series for the whole temperature region investigated.  相似文献   

8.
The effects of Fe-substitution of YBa2Cu3Oy have been investigated by means of Raman scattering, X-ray diffraction, resistivity and susceptibility measurements. A series of samples of YBa2(Cu1 − xFex)3Oy with different dopant concentration (0 x 0.15) has been prepared in two batches, the second set having undergone twice the heat and mechanical treatment used to produce the first batch. Considerable improvement in the superconducting transition temperature, Tc, is obtained upon reprocessing. A phase transformation from orthorhombic to tetragonal symmetry is observed for x=0.05 from the X-ray measurements in agreement with previous work. Using a micro-Raman technique, all five Ag vibrational modes have been measured and their dependence on Fe-concentration is analyzed. There are indications that iron substitutes for copper at both sites and that the structure is a mixture of orthorhombic and tetragonal microdomains for all x.  相似文献   

9.
Magnetic susceptibility, X-ray diffraction and resistivity measurements of the system Bi1.4Pb0.6Sr2Ca2−xGaxCu3Oy are reported for 0 x 2. The high-Tc 2223 phase with a Tc of 107 K for x = 0 exists for x 0.3. The low-Tc 2212 phase with a Tc of 75 K for x = 0 exists for the full range of x. The highest values of the critical temperature and the largest volume fraction of the low-Tc phase in compounds with Ga occur for x = 0.5 ± 0.1. The identification of CaO by X-ray diffraction for x 0.6 indicates that Ga replaces Ca in the compound.  相似文献   

10.
The n = 2 Aurivillius phase Bi2 − xPbxSr1 − xNd2O9 was successfully synthesized as a ceramic material over the whole range of simultaneous, charge compensated substitution x = 0–1.0. Structural investigations were performed by Rietveld refinement applying different space groups Fmmm and A21am, and additionally by X-ray absorption spectroscopy (EXAFS) on the Nd LIII-edge, confirming the accommodation of Nd on the atomic sites of Sr, which implies the substitution of Bi3+ by the isoelectronic Pb2+. The ferroelectric transition temperature Tc = 270 °C of the substituted powders with x = 0.4 and 1.0 is distinctly reduced compared to the unsubstituted sample with Tc = 450 °C. In temperature resolved powder X-ray diffraction patterns no structural phase transition could be detected.  相似文献   

11.
We have investigated the effect of Hg addition on the superconducting properties of BiSrCaCuO system. Polycrystalline samples with nominal composition Bi2Sr2−xHgxCa1Cu2Oy and Bi2Sr2−xHgxCa2Cu3Oy (x=0.3) were synthesized and used to investigate the phase evolution by XRD, superconducting behaviour by RT measurement and the structural grain boundary effects by SEM. From these measurements, it has been noticed that the phases obtained with both types of compositions are the same as Bi2212 but the Tc values are different. With additional annealing, Tc zero values were raised from 60 to 72 K in Bi2Sr2−xHgxCa1Cu2Oy and 64 to 92 K in Bi2Sr2−xHgxCa2Cu3Oy. Also, an improved grain boundary linkage has been observed by SEM for the 92 K sample.  相似文献   

12.
Cation deficient spinels NixMn3−x3δ/4O4+δ (0≤x≤1) have been prepared by thermal decomposition of mixed oxalates Nix/3Mn(3−x)/3(C2O4nH2O in air at 623 K. They have been characterised by temperature programmed reduction (TPR) under H2, the reaction being followed by gravimetric and powder X-ray diffraction measurements. It has been shown that TPR proceeds in several steps. The first steps correspond to the loss of nonstoichiometric oxygen leading to the formation of a stoichiometric oxide. During the following stages the manganese cations are reduced, causing the spinel structure to be destroyed, and the formation of solid solution of NiO in a cubic MnO. Subsequently, Ni2+ cations undergo a reduction to metallic nickel, and, finally, a mixture of nonstoichiometric MnO1−δ and metallic nickel is formed. These oxides contain a high level of vacancies which vary with the nickel content with a maximum of δ≈1 near x=0.6. This nonstoichiometry is ascribed both to the presence of Ni3+ and excess of Mn4+.  相似文献   

13.
Chemical synthesis routes to LixMn2O4 (0.15≤x≤1) in non-equilibrium reduction processes were developed to carry out detailed structural analysis. Non-equilibrium LixMn2O4 (0.15≤x≤1) samples were prepared by chemical lithiation of λ-MnO2 with LiI for 24 h; longer than 1 week was needed to reach true equilibrium at room temperature. The samples were characterized by X-ray diffraction analysis. The phase diagram was different from that in the equilibrium state; three cubic phases (phases A, B and C) were observed for LixMn2O4 (0.15≤x≤1). There were two regions of two-phase coexistence: the region of 0.25<x<0.55 (phase B+phase C) and 0.6<x<1.0 (phase A+phase B). In the compositional range of 0.6<x<1.0, the lattice constants of phases A and B change with the lithium composition, this indicates that it is a structural anomaly with a metastable two-phase character in non-equilibrium reduction processes.  相似文献   

14.
A series of substituted lead iron niobate compounds with the general formula Pb2+(1−x)AZx(Fe{(1−(2−Z)x)/2}Nb{(1+(2−Z)x)/2})O3 (0<x<0.6 and A=La3+, K+ or Sr2+) were prepared by a modified solid-state synthesis. The relative concentrations of Fe3+ and Nb5+ were adjusted to compensate the charge imbalance due to the aliovalent substitution. The dielectric constant and magnetic susceptibilities were studied as a function of temperature. The temperature of the dielectric maximum, TM, of the substituted compounds decreased linearly with increasing concentration of the substituent ions. The magnetic measurements showed an antiferromagnetic transition at temperatures TN1 due to the superexchange interactions mediated by Fe–O–Fe and an additional antiferromagnetic-type transition at TN2. TN1 linearly increased with the increasing concentration of Fe3+ ion at the B-site of ABO3-type substituted compounds. TM is shown to be directly dependent on the concentration of the ferroactive Nb5+ ions at the B-site and Pb2+ ions at the A-site.  相似文献   

15.
New Scheelite-related solid solutions of the compositions Nax/2Bi1−x/2MoxV1−xO4 (0≤x≤1) and Bi1−x/3 MoxV1−xO4(0≤x≤0.2) have been synthesised by the substitution of Na and Mo at the A and B sites respectively of the ABO4 type ferroelastic BiVO4. The phases were characterised using chemical analysis, powder X-ray diffraction, scanning electron microscopy, EDAX, and Raman spectroscopy. While almost a continuous solid solution is obtained for the series Nax/2Bi1−x/2MoxV1−xO4, the absence of Na at the A-site results only in a narrow stability region for the other series, Bi1−x/3 MoxV1−xO4 where 0≤x≤0.2. Raman spectra of selected samples at room temperature also suggest that vanadium and molybdenum atoms are disordered at the tetrahedral sites.  相似文献   

16.
Mixed oxides in the system S-Ce-Co-O were prepared by solid state reaction and by freeze-drying of precursor compounds followed by thermal treatment. Two types of perovskite oxides exist in the system: Solid solutions of the type Sr1 − yCeyCoO3 − x and mixed oxides of the type (1 − y)SrCeO3 − ySrCoO3 − x. Microstructures and phase compositions were determined by electron microscopy and X-ray diffraction. SrCoO3 − x forms a solid solution of ceria on the A-site in the strontium cobaltite lattice up to 0.15 mol Ce. This solid solution corresponds to the high-temperature structure of pure SrCoO3 − x and is characterized by high oxygen exchange and electrical conductivity. The oxygen deficiency x was measured by solid electrolyte coulometry. The oxygen deficiency of solid solutions Sr1 − yCeyCoO3 − x increases with temperature and decreases with pO2 in the ambient atmosphere and with increasing Ce dopant concentration. The pO2-T-x diagram of the solid solution was determined. The T, pO2 and dopant concentration dependencies of electrical conductivity were measured by a four-point d.c. technique. By Ce doping strontium cobaltite becomes a stabilized high-conductive material (maximum conductivity: 500 S cm−1 at 400 °C, Ea = 0.025 eV, p-type). Above this temperature the T-coefficient of the conductivity changes from positive (semiconducting) to negative values.  相似文献   

17.
Superconductivity and crystallographic properties of La2 − xMxCuO4 − δ (M = Na, K) are studied. In the La2 − xMxCuO4 − δ system, superconductivity is detected for x 0.2. Oxygen content analysis shows that the system has more oxygen vacancies than the La2 − xSrxCuO4 − δ system. These oxygen vacancies may reduce the hole concentration, and high Na-doping is needed to produce superconductivity. In the La2 − xKxCuO4 − δ system, superconductivity is observed for the first time. Resistivity and magnetic susceptibility measurements show that Tc(onset) is 40 K and the Meissner volume fraction is about 4% for x = 0.7. The system changes from orthorhombic to a tetragonal K2NiF4 structure at x ≈ 0.3 and only tetragonal samples show superconductivity.  相似文献   

18.
Formation of the La2Cu1−xCoxO4+δ solid solutions with orthorhombic K2NiF4-type structure was found to be in the range of 0≤x≤0.30 at temperatures above 1270 K. Incorporating cobalt into the copper sublattice of lanthanum cuprate leads to increasing oxygen hyperstoichiometry and decreasing electrical conductivity. Thermal expansion coefficients of the La2Cu1−xCoxO4+δ (x=0.02–0.30) ceramics at 470–1100 K were calculated from the dilatometric data to vary in the range (12.2–13.2)×106 K1. Studying the dependence of oxygen permeation fluxes through La2Cu(Co)O4+δ on the membrane thickness demonstrated that the oxygen transport at the thickness values below 1 mm is limited by both surface exchange rate and bulk ionic conductivity. Oxygen permeability of the La2Cu1−xCoxO4+δ solid solutions was ascertained to increase with cobalt concentration at x=0.02–0.10 and to decrease with further dopant additions, indicating a participation of interstitial oxygen in the ionic transport.  相似文献   

19.
Phase evolution in the Bi---Sr---Ca---Cu---Al---O system was studied. Two Al-containing phases BiSr1.5Ca0.5Al2Oz and (Sr1−xCax)3Al2O6 (x = 0.4 − 0.45) were determined to be chemically compatible with Bi2.18Sr2CaCu2O8+x (Bi-2212) at temperatures of the samples processing. The phase equilibria in the title system were investigated above the solidus temperature. The BiSr1.5Ca0.5Al2Oz was found to be in equilibrium only with the melt and the (Sr1−xCax)3Al2O6 phase. This latter aluminate equilibrated with Ca,Sr cuprates, CaO, the Cu-free phase, and the liquid. The melting and solidification in Bi-2212, doped with the aluminate, corresponded to the reversible reaction Bi-2212 + BiSr1.5Ca0.5Al2Oz ↔ (Sr1−xCax)3Al2O6 + liquid. Two sets of superconducting composite materials with initial compositions Bi-2212 + nBiSr1.5Ca0.5Al2Oz and Bi-2212 + m(Sr1−xCax)3Al2O6 were prepared by solidification from the partial melt. The former material was composed mostly of large Bi-2212 lamellas separated by the BiSr1.5Ca0.5Al2Oz phase, which destroyed superconducting links between Bi-2212 grains. The latter material consisted of a Bi-2212 polycrystalline matrix with high concentration of small (ca. 3 μm) grains of (Sr1−xCax)3Al2O6 imbedded in Bi-2212 lamellas. The Bi-2212 + m(Sr1−xCax)3Al2O6 materials displayed a trend to enhance flux pinning at T = 60 K with the increase of aluminate phase content.  相似文献   

20.
The effects of Cu doping in MgB2 superconductor has been studied at different processing temperatures. The polycrystalline samples of Mg1−xCuxB2 with x = 0.05 were synthesized through the in-situ solid sate reaction method in argon atmosphere at different temperature range between 800–900 °C. The samples were characterized through X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and low temperature RT measurement techniques for the phase verification, microstructure and superconducting transition temperature, respectively. The XRD patterns of Mg1−xCuxB2 (x = 0.05) do not exhibit any impurity traces of MgB4 or MgB6 and they show the sharp transition in the samples prepared at 850 °C. The onset transition temperature of the prepared samples is around 39 K, which is almost the same as that for the pure MgB2. This indicates that Cu doping in MgB2 does not affect the transition temperature. The SEM micrograph of Mg0.95Cu0.05B2 has shown that the sample is dense with grain size smaller than 1 μm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号