首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol production from corn starch in a fluidized-bed bioreactor   总被引:1,自引:0,他引:1  
The production of ethanol from industrial dry-milled corn starch was studied in a laboratory-scale fluidized-bed bioreactor using immobilized biocatalysts. Saccharification and fermentation were carried out either simultaneously or separately. Simultaneous saccharification and fermentation (SSF) experiments were performed using small, uniform κ-carrageenan beads (1.5–2.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. Dextrin feeds obtained by the hydrolysis of 15% drymilled corn starch were pumped through the bioreactor at residence times of 1.5–4h. Single-pass conversion of dextrins ranged from 54–89%, and ethanol concentrations of 23–36 g/L were obtained at volumetric productivities of 9–15 g/L-h. Very low levels of glucose were observed in the reactor, indicating that saccharification was the rate-limiting step. In separate hydrolysis and fermentation (SHF) experiments, dextrin feed solutions of 150–160 g/L were first pumped through an immobilized-glucoamylase packed column. At 55°C and a residence time of 1 h, greater than 95% conversion was obtained, giving product streams of 162–172 g glucose/L. These streams were then pumped through the fluidized-bed bioreactor containing immobilized Z. mobilis. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L were achieved, resulting in an overall process productivity of 23 g/L-h. Atresidence times of 1.5 and 1 h, conversions of 75 and 76%, ethanol concentrations of 49 and 47 g/L, and overall process productivities of 19 and 25 g/L-h, respectively, were achieved.  相似文献   

2.
Tests were performed in a continuous stirred tank reactor (CSTR), with and without cell recycling, to produce ethanol. The reactor without cell recycling produced the kinetic model of ethanol production, whereas the reactor with cell recycling allowed for a study of process stability. The Levenspiel kinetic model was adopted; however, in the case of fermentation with cell recycling, the coefficient of cell death was added. It was observed that cellular viability varied greatly throughout the fermenting process and that microaeration is of fundamental importance in maintaining the stability of the process.  相似文献   

3.
Ethanol production in a bioreactor with integrated membrane distillation (MD) module has been investigated. A hydrophobic capillary polypropylene membrane (Accurel PP V8/2 HF), with an external/internal diameter ratio, d out/d in = 8.6 mm/5.5 mm and pore size 0.2 μm, was used in these studies. The products (mainly ethanol and acetic acid) formed during the fermentation of sugar with Saccharomyces cerevisiae inhibited the process. These products were selectively removed from the fermentation broth by the MD process, which increased the efficiency of the conversion of sugar to alcohol from 0.45 g to 0.5 g EtOH per g of fermented sucrose. The bioreactor efficiency also increased by almost 30 %. Separation of alcohol by the MD generates a higher yield of ethanol in the permeate than in the broth. The enrichment coefficient amounted to 4-8, and depended on the ethanol concentration in the broth. The separated solutions did not wet the membrane in use for 2500 h of the MD experiments and the retention of inorganic solutes was close to 100 %.  相似文献   

4.
In a laboratory-scale study, characteristics of membrane fouling in an A/O (anoxic/oxic) series membrane bioreactor (MBR) and in a vertical submerged membrane bioreactor (VSMBR) treating synthetic wastewater were compared under the same operating conditions. Accordingly, fouling characteristics of a pilot-scale VSMBR treating municipal wastewater were studied under various operating conditions. Various physical, chemical, and biological factors were used to describe membrane resistances. As a result, it was concluded that high concentrations of extracellular polymeric substances (EPS), high viscosity and a high sludge volume index (SVI) corresponded to high membrane resistance indicating severe membrane fouling in both the laboratory-scale MBRs and the pilot-scale VSMBR. In addition, high fouling potential was observed in the pilot-scale VSMBR at 60-day sludge retention time (SRT). In this case, as hydraulic retention time (HRT) decreased from 10 to 4 h, EPS concentrations increased and the average particle size increased, leading to reduced settling of the sludge and increased membrane fouling. To mitigate fouling, two different methods using air bubble jets were adopted in the pilot-scale VSMBR. As a result, it was found that air backwashing was more efficient for fouling mitigation than was air scouring.  相似文献   

5.
鲁馨  张海丰  李剡 《化学通报》2017,80(3):260-265
膜生物污染一直是膜生物反应器(membrane bioreactor,MBR)在废水处理工艺中需要解决的一大难题。最近研究表明:基于群体感应的淬灭技术可以作为MBR活性污泥体系中一种有效的膜生物污染防治策略。因而,识别和分析群体感应产生的信号分子是应用群体淬灭技术防治MBR中膜生物污染的关键。本文首先介绍了活性污泥体系中的群体感应机理和N-酰基高丝氨酸内脂(N-acyl homoserine lactone,AHL);其次,归纳近期研究中针对MBR中AHL定性和定量分析方法;最后,对MBR中AHL识别及分析技术应用进行了展望。  相似文献   

6.
Lactic acid production through cell-recycle repeated-batch bioreactor   总被引:1,自引:0,他引:1  
The effect of various nitrogen sources on cell growth and lactic acid production was investigated. The most effective nitrogen source was yeast extract; more yeast extract gave higher cell growth and lactic acid productivity. Yeast extract dosage and cell growth were proportional up to a yeast extract concentration of 30 g/L, and lactic acid productivity was linearly correlated up to a yeast extract dosage of 25 g/L. However, increasing the yeast extract content raises the total production cost of lactic acid. Therefore, we attempted to find the optimum yeast extract dosage for a repeated-batch operation with cell recycling. The results show that when using Enterococcus faecalis RKY1 only 26% of the yeast extract dosage for a conventional batch fermentation was sufficient to produce the same amount of lactic acid, whereas the lactic acid concentration in the product stream (92–94 g/L) and lactic acid productivity (6.03–6.20 g/[L·h]) were similar to those of a batch operation. Furthermore, long-term stability was established.  相似文献   

7.
Lactic acid fermentation in cell-recycle membrane bioreactor   总被引:2,自引:0,他引:2  
Traditional lactic acid fermentation suffers from low productivity and low product purity. Cell-recycle fermentation has become one of the methods to obtain high cell density, which results in higher productivity. Lactic acid fermentation was investigated in a cell-recycle membrane bioreactor at higher substrate concentrations of 100 and 120 g/dm3. A maximum cell density of 145 g/dm3 and a maximum productivity of 34 g/(dm3…h) were achieved in cell-recycle fermentation. In spite of complete consumption of substrate, there was a continuous increase in cell density in cell-recycle fermentation. Control of cell density in cell-recycle fermentation was attempted by cell bleeding and reduction in yeast extract concentration.  相似文献   

8.
In this communication, a porous stainless steel (PSS) tube was electrolessly plated into Pd–Ag membrane reactor which was used for separating hydrogen produced in an ethanol steam reforming reaction with the addition of oxygen, which has not been reported before. Palladium and silver were deposited on porous stainless steel tube via the sequential electroless plating procedure with an overall film thickness of 20 μm and Pd/Ag weight ratio of 78/22. Ethanol–water mixture (nwater/nethanol = 1 or 3) and oxygen (noxygen/nethanol = 0.2 or 0.7) were fed concurrently into the membrane reactor packed with MDC-3. The reaction temperatures were set at 593–723 K and the pressures 3–10 atm. The effect of oxygen addition plays a vital role on the ethanol steam reforming reaction, especially for the Pd–Ag membrane reactor in which a higher flux of hydrogen is required. If oxygen in the feed is not sufficient, it would be possible that steam reforming reaction prevails. Inversely, high O2 addition will shift the reaction scenario to be partial oxidation dominating, and selectivity of CO2 increases with increasing oxygen feed. At high pressure, autothermal reaction of ethanol would be easily reached.  相似文献   

9.
Bipolar membranes were reported to split alcohol into alkoxide ions and H+; however, there is no direct evidence for ethanol splitting, i.e., the existence of ethoxide ions. This work uses ethanol for alcohol splitting test and 1H NMR for the identification of ethoxide ions. According to the spectra analysis, the chemical shifts of proton H, δ 3.736–3.666 (q, 2H) and δ 1.255–1.209 (t, 3H) can only be ascribed to CH3CH2O. Therefore, this work first proves ethanol splitting in bipolar membranes by detecting the existence of sodium ethoxide. To further extend the application of electrodialysis to non-aqueous systems (as in organic synthesis), membranes of better solvent-resistance are needed to be developed.  相似文献   

10.
Glucose oxidase (GO) (EC 1.1.3.4) was used as catalyst for oxidizing glucose into gluconic acid utilizing a 10-mL Bioengineering Enzyme Membrane Reactor® or a 400-mL Millipore Stirred Ultrafiltration Cell (MSUC) coupled with a Millipore UF membrane (cutoff of 100 kDa) and operated for 12 h under an agitation of 100 rpm, pH 5.5, and 30°C. The effect of feeding rate (0.10, 0.15, or 0.20 min?1), glucose (2.5 or 5.0 mM), and GO (1.0 or 2.0 mg/mL) concentrations on the catalysis were studied. A yield of about 75% was attained when the MSUC filled with 1.0 mg/mL of GO was fed with 2.5 mM glucose solution at a rate of 0.15 min?1.  相似文献   

11.
王文文  张海丰 《化学通报》2017,80(4):356-360
膜生物反应器(Membrane bioreactor,MBR)作为一种新型的污水处理技术,近些年来备受关注。然而,膜污染问题成为了该工艺广泛应用的最大障碍。现已证明,向MBR中投加铁系混凝剂能够减缓膜污染。本文首先综述了不同价态铁离子对MBR污染物去除的影响,然后对铁离子在污泥混合液中分布及迁移转化进行了分析,接着阐明了铁离子对膜污染的影响,最后对该领域的研究进行了展望。  相似文献   

12.
The recent implementation of a new two-step centrifugation process for extracting olive oil in Spain has substantially reduced water consumption, thereby eliminating oil mill wastewater. However, a new high sugar content residue is still generated. In this work the two fractions present in the residue (olive pulp and fragm ented stones) were assayed as substrate for ethanol production by the simultaneous saccharification and fermentation (SSF) process. Pretreatment of fragmented olive stones by sulfuric acid-catalyzed steam explosion was the most effective treatment for increasing enzymatic digestibility; however, a pretreatment step was not necessary to bioconvert the olive pulp into ethanol. Theolive pulp and fragmented olive stones were tested by the SSF process using a fed-batch procedure. By adding the pulp three times at 24-h intervals, 76% of the theoretical SSF yield was obtained. Experiments with fed-batch pretreated olive stones provided SSF yields significantly lower than those obtained at standard SSF procedure. The preferred SSF conditions to obtain ethanol from olives stones (61% of theoretical yield) were 10% substrate and addition of cellulases at 15 filter paper units/g of substrate.  相似文献   

13.
Studies have been carried out using immobilized Z.mobilis in fluidized-bed bioreactors and have emphasized operation during high productivity and conversion. The bacteria are immobilized within small uniform beads (~1 to 1.5-mm diam) of K-carrageenan at cell loadings of 15-50 g (dry wt)/L. Conversion and productivity were measured under a variety of conditions, including feedstocks, flow rates, temperature, pH, and column sizes (up to 2.5 m tall). Volumetric productivities of 50-120 g EtOH/h-L reactor volume have been achieved. Productivities of 60 g/h-L are demonstrated from a 15% feed with residual glucose concentrations of less than 0.1% and 7.4% EtOH in the tallest fermentor. Among feeds of 10, 15, and 20% dextrose, the 15% gave the highest productivity and avoided substrate inhibition. A temperature of 30°C and pH 5 were the optimum conditions. The ethanol yield was shown to be nearly constant at 0.49 g EtOH/g glucose, or 97% of the theoretical under a variety of conditions and transients. The biocatalyst beads have been shown to remain active for two months. Nonsterile feed has been used for weeks without detrimental contamination. The advantages of this advanced bioreactor system over conventional batch technology are discussed.  相似文献   

14.
本研究采用大蒜素为原料,将其包埋在海藻酸钠中,制成大蒜素包埋球(allicin entrapping beads, AEBs)并投加至膜生物反应器(membrane bioreactor, MBR)中,以探讨大蒜素的群体淬灭(quorum quenching, QQ)效应对MBR污泥混合液可滤性的影响。实验结果表明:QQ作用对污泥混合液性质影响显著,对MBR污染物去除影响较小;混合液中胞外聚合物(extracellular polymeric substances, EPS)和溶解性微生物代谢产物(soluble microbial products, SMP)含量降低;通过对修正污染指数(modified fouling index, MFI)检测表明,QQ可提高污泥混合液可滤性,该指标与胞外多糖浓度紧密相关。  相似文献   

15.
An ethanol biosensor was fabricated based on a Methylobacterium organophilium-immobilized eggshell membrane and an oxygen(O2) electrode.A linear response for ethanol was obtained in the range of 0.050-7.5 mmol/L with a detection limit of 0.025 mmol/L(S/N= 3) and a R.S.D.of 2.1%.The response time was less than 100 s at room temperature and ambient pressure. The optimal loading of bacterial cells on the biosensor membrane is 40 mg(wet weight).The optimal working conditions for the microbial biosensor are pH 7.0 phosphate buffer(50 mmol/L) at 20-25℃.The interference test,operational and storage stability of the biosensor are studied in detail.Finally,the biosensor is applied to determine the ethanol contents in various alcohol samples and the results are comparable to that obtained by gas chromatographic method and the results are satisfactory.Our proposed biosensor provides a convenient,simple and reliable method to determine ethanol content in alcoholic drinks.  相似文献   

16.
A versatile and high capacity membrane emulsification system which utilises a rotating membrane for the precision manufacture of oil-in-water (o/w) emulsions is investigated. The o/w emulsions produced used a low viscosity paraffin wax as the dispersed phase, Tween 20 or sodium dodecyl sulphate (SDS) as the emulsifier and carbomer as the stabiliser, respectively. The ability to generate coarse monodisperse emulsions was demonstrated with droplets of average diameter 80–570 μm and coefficient of variation ranging from 9.8% to 33.6%. The effects of key process parameters on the droplet size and distribution are discussed, including requirements for future developments of the membrane.  相似文献   

17.
Polymer carriers, poly(hydroxyethyl acrylate(HEA)-methoxy polyethylene glycol methylacrylate (M-23G)) and poly (hydroxyethyl accrylate(HEA)-glycidyl methlacrylate(GMA)) using for immobilization of yeast cells were prepared by radiation polymerization at low temperature. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves. The ethanol productivity of immobilized yeast cells with these carriers was related to the monomer composition of polymers and the optimum monomer composition was 20% : 10% in poly(HEA-M-23G) and 17%: 6% in poly(HEA-GMA). In this case, the ethanol productivity of immobilized yeast cells was 29mg/ml/h which was about 4 times that of cells in free system. The relationship between the activity of immobilized yeast cells and the water content of polymer carrier were also discussed.  相似文献   

18.
Ethanol production from concentrated oak wood hydrolysate was carried out to obtain a high ethanol concentration and a high ethanol yield. The effect of added inhibitory compounds, which are typically produced in the pretreatment step of steam-explosion on ethanol fermentation, was also examined. p-Hydroxybenzoic aldehyde, a lignin-degradation product, was the most inhibitory compound tested in this study. Compounds with additional methyl groups had reduced toxicity and the aromatic acids were less toxic than the corresponding aldehydes. The lignin-degradation products were more inhibitory than the sugar-derived products, such as furfural and 5-hydroxymethylfurfural (HMF). Adaptation of yeast cells to the wood hydrolysate and detoxification methods, such as using charcoal and overlime, had some beneficial effects on ethanol production using the concentrated wood hydrolysate. After treatment with charcoal and low-temperature sterilization, the yeast cells could utilize the concentrated wood hydrolysate with 170 as well as 140 g/L glucose, and produce 69.9 and 74.2 g/L ethanol, respectively, with a yield of 0.46–0.48 g ethanol/g glucose. In contrast, the cells could not completely utilize untreated wood hydrolysate with 100 g/L glucose. Low-temperature sterilization, with or without charcoal treatment, was very effective for ethanol production when highly concentrated wood hydrolysates were used. Low-temperature sterilization has advantages over traditional detoxification methods, such as using overlime, ion exchange, and charcoal, because of the reduction in the total cost of ethanol production.  相似文献   

19.
In ceramic membrane bioreactor (CMBR), the permeate flux through a multi-channel tubular membrane has been improved by using turbulence promoters with different configurations. It was confirmed that the introduction of inserts led to better flux in comparison with empty tube. Winding inserts with 10 mm pitch and 1.6 mm wire diameter showed better performances than the others did. A 30-day laboratory-scale operation for reclamation of municipal wastewater was studied using the ceramic membrane bioreactor. The flux under the same operation parameters increased from 70 to 175 l m−2 h−1. The average reduction rate of chemical oxygen demand (COD) was more than 95% for municipal wastewater. The investigation showed that the introduction of winding inserts was effective in increasing permeate flux of a CMBR system, and the effluent quality would not reduce in comparison with empty tube.  相似文献   

20.
The optimisation of the energy demand in the application of dead-end filtration in an immersed membrane bioreactor applied to groundwater denitrification has been studied. Filtration cycle length was varied at a set flux to control the amount of foulant deposited at the membrane surface. Physical cleans comprising a simultaneous backflush and gas injection were subsequently instigated and the reversibility of the deposit determined by the residual resistance, Rres. Examination of Rres versus flux and cycle length variation indicated an operational envelope where limited fouling occurred. The transition from limited fouling to extensive fouling was indicated by a parameter based on the critical accumulated mass, indicating incipient deposit consolidation. The transition between regions became less severe when the solids retention time was increased from 10 to 25 and 40 days. This was apparently related to a shift in bulk physical characteristics. Nevertheless, low residual fouling was observed during long-term filtration when operating below the critical mass, resulting in a 20× reduction in energy demand over that of constant gas injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号