首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A γ-phase to α-phase transformation in a specimen of isotactic polypropylene crystallized under conditions of high pressure was induced by drawing at 100°C. X-ray studies showed that the unoriented component remained in the γ-phase, and that the oriented component was found only in the α-phase. This evidence supports a previous suggestion that the phase transformation is martensitic in character. The consequences of such an assumption are discussed. The role of dislocations in polymeric systems is generally believed to be not too significant, but since martensitic reactions involve cooperative movements of atoms, an exception in this case is suggested. A possible mechanism for the phase transformation is suggested.  相似文献   

2.
The effects of temperature and water on the crystal transition of nylon 6 from the γ phase to the α phase, which is caused by stretching along the chain direction, were investigated. The γ-phase fibers with high crystallite orientation were stretched at constant load under various conditions. An inversion of the effect of water on the transition occurs at about ?60°C. Stretching in the wet state is more effective for the transition at higher temperature. In contrast, at low temperatures water in the crystalline regions actsasa cohesive agent for the chains and increases the activation energy for the transition. Thus, dry stretching is more effective than wet stretching at very low temperature. The fraction of transformed α-phase crystallites increases abruptly over a narrow range of stress. Thus the critical stress can be determined for the transition. The critical stress changes appreciably with temperature; the higher the temperature, the lower the critical stress. The relation between stretching temperature and critical stress was analyzed by Flory's equation for the shift of transition temperature by stress. About 220°C. was estimated as the zero-stress transition temperature. The heat content of the γ-phase crystal was estimated to be smaller by 500 cal./mole than that of the α-phase crystal. This result suggests that the free energy of the γ-phase crystal is lower than that of the α-phase crystal at temperatures lower than the transition point. The irreversible strain of a sample in which the crystal transition has taken place is very small at low temperature. This small extension of the sample is evidence that the γ → α transition produced by stretching along the chain axis is a crystal-crystal transition.  相似文献   

3.
Samples of isotactic polypropylene (PP) were zone-solidified in temperature gradients up to 300°C/cm at growth rates down to 3 μm/min. Oriented α-type spherulites were obtained only by nucleation. While β nucleation is extremely rare, the β phase is easily initiated by growth transformations along the oriented α front. Since the β phase was found to grow considerably faster than the α phase, the α-to-β transformation points diverge across the sample, interrupting growth of the oriented α fibrils. This causes subsequent nucleation to yield teardrop-shaped α spherulites. Differential scanning calorimetry (DSC) studies of zone-solidified PP show the β-phase to be favored by slow growth rates, high temperature gradients, and large degrees of superheat in the melt—all of which tend to suppress nucleation. Differential thermograms of largely β-PP obtained at a heating rate of 1°C/min show the actual melting and recrystallization of the β spherulites into the α form.  相似文献   

4.
The α to γ transition that occurs in nylon 6 upon iodine treatment was investigated by infrared spectroscopy, differential thermal analysis, and x-ray diffraction techniques. Thin films of nylon (0.2 mil) were treated in either iodine–potassium iodide aqueous solution or in iodine vapor. Very short treatment times, in the order of 30 sec, were found to effect the transition when a solution 0.5M with respect to iodine was used. The infrared spectra of the iodine nylon complexes formed from either the α- or γ-nylon 6 treated in vapor or dissolved iodine were all similar. This is an indication that molecular iodine is the active species in forming the complex. The temperature of the washing solution used to remove the iodine from the nylon determines whether an α-nylon 6 or γ-nylon 6 is obtained from the complex after washing. Nylon 6 plaque surfaces and thin films are similar in their behavior towards the iodine treatment. The γ-nylon 6 is a stable modification at all temperatures below its melting point. The conversion of the γ form back to the α modification can occur only if the hydrogen bonding is severely affected, e.g., by phenol treatment, iodine treatment, melting, etc. Infrared spectroscopy provided no evidence for an α–γ transition in nylon 6 on heating the sample continuously through its melting point. The shapes of the melting peaks in the above two modifications of nylon 6 were sufficiently different to provide a means of identifying the two crystalline forms.  相似文献   

5.
Raman spectroscopy is used to investigate the conformation and packing of isotactic crystalline α-phase polypropylene compared with lower-order β-phase isotactic polypropylene and to study the solution behavior of atactic polypropylene. The high-frequency region of the spectrum is analyzed in light of a normal-mode calculation that takes into account the methyl-group vibrations. This region is sensitive to both chain conformation and packing, and because of the high intensity of the methyl and methylene high-frequency stretching modes, it can be used to probe small changes in intermolecular or intramolecular order. Differences in the thermal behavior between the two solid isotactic polypropylene samples are explained interms of packing defects which exist in the β-phase form. In the solution study, we demonstrate that, for molecules in which bands sensitive to intermolecular interactions exist, as is the case of the methyl and methylene vibrations of polypropylene, spectroscopic techniques can be used to estimate the minimum overlap concentration.  相似文献   

6.
Copoly(γ-stearly-L -glutamate-γ-methyl-L -glutamate)s with various compositions were synthesized by the ester exchange reaction of poly(γ-methyl-L -glutamate). Circular dichroism studies were carried out for solution and solid film as a function of the degree of stearylation and temperature. The slight and gradual temperature dependence of molecular ellipticity was observed for solution of all the copolyglutamates studied here and for the solid film of the copolyglutamate with the degree of stearylation of 16%, indicative of no reversal in the helix sense. However the remarkable change in negative molecular ellipticity with temperature was detected for the solid film of the copolyglutamate with a low degree of stearylation, e.g., 52%, whereas the drastic change in molecular ellipticity from a negative to positive value appeared for that with a higher degree of stearylation. This is discussed in terms of the reversal in the helix sense from a right- to left-handed α helix with the increase of temperature occurring at the melting temperature of the ordered side chain region.  相似文献   

7.
A crystal transition was found in nylon 6 fibers from the γ-phase to α-phase on stretching in the chain direction. The γ-phase fiber prepared by iodine treatment was stretched under constant load and the crystal deformation was observed by an x-ray method. The critical stress for the transition was estimated as 4 × 103 kg./cm.2 at room temperature. For this crystal transition the following conditions must be satisfied: (1) extension of the γ-phase chain to untwist the chain around the amide groups, (2) translational mobility of the chain to change the stacking in the crystallite. At the critical stress, the chain in the crystal is extended to nearly the same length as that of α-phase. The translational movement occurs under stress higher than about 3 × 103 kg./cm.2, and the pseudohexagonal cell is deformed into a monoclinic form. However, the monoclinic crystallites present at a stress lower than the critical value estimated above are unstable and may be brought back to the original form by head treatment at 100°C. No crystal transition occurs at low temperature.  相似文献   

8.
The sequence distributions of α-methylstyrene-methacrylonitrile copolymers have been determined quantitatively as a function of monomer feed composition and conversion at 60°C by use of the run-number concept. The azeotropic copolymer was found to be highly alternating. For this copolymer the data showed that 83% of the diad placements took the form of an AMS unit followed by a MAN unit, or vice versa. The triad sequence in which an AMS unit is centered between two MAN units was 92%. It was found that the AMS-AMS diad sequence is only 2%, and there were no AMS-AMS-AMS triad sequences in the copolymer. The sequence distributions were correlated with Izod impact strength and heat-deflection temperature properties.  相似文献   

9.
γ-phase crystals of isotactic polypropylene (iPP) obtained from low-molecular-weight extracts of pyrolyzed polymers are examined by electron microscopy and electron diffraction. γ-phase crystals differ from α-phase crystals in three important respects: (i) they are elongated along the b* rather than the a* axis, (ii) the chain axis is inclined at 50° to the lamellar surface (indexed as 101) rather than normal to it, and (iii) they show screw dislocations, while α crystals do not. γ crystals are nucleated on the lateral (010) faces of a α crystals; the bα and b axes are parallel. Virtually no nucleation of the α phase takes place on the γ phase, which is therefore not involved in the repetitive lamellar branching leading to iPP quadrites. Crystallization of the γ phase appears to be favored by or linked to the absence of chain folds and may be involved in the macroscopic curvature of iPP branches.  相似文献   

10.
A method is described to separate α‐ from β‐arylalanines by ligand exchange chromatography on a nickel nitrilotriacetate agarose column with UV monitoring of the effluent. Separate mixtures containing an α‐ and β‐arylalanine pair (1 mg of each) were individually loaded onto the nickel resin pre‐equilibrated with the mobile phase at room temperature, and the amino acids were eluted from the column with a gradient from pH 12.0–8.0. The β‐arylalanines eluted first, followed by the α‐isomers. The four α/β‐amino acid pairs tested were well separated with baseline resolution. An aliquot of each fraction was chemically treated to derivatize the amino acids to their N‐acyl methyl ester analogs, and their identities were confirmed by GC/MS analysis. The sample recovery was quantitative (>98%), and the column matrix was very resilient, as demonstrated by consistent separation of the solutes after ~100 preparative cycles.  相似文献   

11.
Novel A4B3 Molecules in the System P4Se3–As4Se3 By means of 31P-NMR and masspectroscopic measurements in the system P4Se3–As4Se3 was shown that in the melt and vapour phase at all compositions molecules of the type P4 ? nAsnSe3 are formed. A separation was possible by liquid chromatography (RP 18-column). The concentration distribution of the different species is nearly statistical. In the solid state at ambient temperature regions of solid solubility with α-P4Se3, α+-phase, α-P4S3 and α-As4Se3 structure were observed. P3AsSe3 could be transformed into a plastically-crystalline phase with β-P4S3 structure. At higher temperatures the phase decomposes slowly. The thermal behaviour of PAs3Se3 is strongly influenced by the heating rate. Using low heating rates it decomposes into an amorphous phase, by fast heating a transformation into a metastable plastically-crystalline modification was achieved. During long extraction with CS2 molecules P4 ? nAsnS3 ? mSem are formed by an exchange reaction. They can also be prepared by melting the proper amounts of the elements.  相似文献   

12.
Recently, a novel enzymatic method was developed for determination of homocysteine. This method utilizes the electrochemical hydrogen sulfide sensor along with methionine α,γ‐lyase to accomplish the fast, accurate, sensitive and selective measurements. As a continuation of this work, another enzyme, homocysteine α,γ‐lyase, was used and the parallel experiments of using both enzymes were carried out against the effect of pH, sensitivity, linearity, and interferences, in an intended comparison between these two enzymes. The excellent linearity of amperometric currents against homocysteine concentrations, high sensitivities and low detection limits for both enzymes reconfirmed that the electrochemical method is superior over other analytical means. The high enzymatic activity of methionine α,γ‐lyase surpassing homocysteine α,γ‐lyase endowed the former higher sensitivity, lower detection limit and faster response than the latter, suggesting methionine α,γ‐lyase a better candidate for homocysteine measurement by electrochemical method. The differences between these two enzymes on the trends of response time and sensitivity at different pH environments, reactivity toward several forms of homocysteine as well as on the interference from several agents were also addressed and discussed.  相似文献   

13.
The solid phase transition mechanism of α‐ to β‐form crystal upon specific treating with supercritical CO2 + cosolvent on original pure α and mixed (α+β) form syndiotactic polystyrene (sPS) was investigated, using wide angle X‐ray diffraction and differential scanning calorimetry measurements as a function of temperature, pressure, and cosolvent content. As in the supercritical CO2, sPS in supercritical CO2 + cosolvent underwent solid phase transitions from α‐ to β‐form, and higher temperature or higher pressure favored this transformation. Due to the higher dipole moment of acetone, small amounts of acetone used as cosolvent with CO2 made the transition of α‐ to β‐form occur at lower temperature and pressure than in supercritical CO2, and made the α‐form crystal completely transform to β‐form in the original mixed (α+β) form, whereas ethanol did not. The original β‐form crystal in the original mixed (α+β) form sample acted as the nucleus of new β‐form crystal in the presence of cosolvent as it did in supercritical CO2, when compared with the original pure α‐form sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1625–1636, 2007  相似文献   

14.
The non-parallel chain structure determined for γ-phase isotactic polypropylene (γ-iPP) is confirmed by Rietveld analysis for highly isotactic high molecular mass iPP crystallized at 200 MPa. The new refinement shows that: (i) stereoregularity or crystallization pressure do not significantly influence the lattice dimensions; (ii) defect inclusion in γ-iPP crystals is unlikely. The α and γ forms have nearly identical bulk internal energy and density, but α-iPP should be normally kinetically favored over γ-iPP which may in turn predominate due to its greater ability to host defects at the crystalline-amorphous interface.  相似文献   

15.
The synthesis and characterization of α,ω‐di(2‐methyl‐2,3‐epoxypropyl)polyisobutylene are reported. The epoxidation of α,ω‐di(isobutenyl)polyisobutylene was achieved at room temperature with dimethyldioxirane, which proved to be a very effective reagent for epoxidation without the formation of byproducts. A very good agreement was found for the conversion determined by 1H NMR and matrix‐assisted laser desorption/ionization mass spectrometry (MALDI HMS). The epoxy end groups were converted quantitatively into aldehyde termini with zinc bromide as a catalyst. The aldehyde groups were then reduced with LiAlH4 into primary hydroxyl functions to obtain α,ω‐di(2‐methyl‐3‐hydroxylpropyl)polyisobutylene with high efficiency. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3974–3986, 2002  相似文献   

16.
The Crystal Structures of α- and β-K3OCl The orange coloured compound K3OCl has been prepared. It exists in a low temperature modification (α-K3OCl) and a high temperature modification (β-K3OCl). The transition temperature is 364 ± 5 K. The crystal structures were determined by x-ray diffraction. α-K3OCl crystallizes at room temperature in the orthorhombic space group Pbnm (Z = 4) with the cell parameters a = b = 723.9(2) pm and c = 1 027.7(2) pm in the anti-GdFeO3-structure type. The high temperature modification β-K3OCl crystallizes (Z = 1) in the cubic space group Pm3m in the β-Ag3SI-structure type with a = 516.2(2) pm (T = 393 K).  相似文献   

17.
Dynamic mechanical measurements were conducted for several kinds of ultra–high-strength polyethylene fibers with different methyl branch contents. As is the case with conventional polyethylene materials, UHSPE fibers also exhibit α, β, and γ-relaxation dispersions. Each relaxation process is the function of both the tensile moduli and the branch contents of UHSPE fibers. It was also found that the γ-process of UHSPE fibers is dominated mainly by the localized molecular motion in the crystalline part, such as a dislocation mode of crystallite defects, which is very sensitive to the branching content. From the time and temperature superposition of the frequency dispersion experiments, it was found that activation energies for both the α2-process and α3-process increase proportionally to the methyl branch content, while the α1-process is not so affected by the branch content. This result shows that the incorporated branch sites in the crystalline part effectively hinder the chain-to-chain slippage; meanwhile, they have not hindered the slippage at the grain boundary so far, which also enables us to explain the creep improvement of UHSPE fibers through branch incorporation with the same mechanism. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Poly(lactic acid) films consisting of α′‐forms were prepared and uniaxially drawn. The effects of the draw rate at temperatures above the glass transition temperature on chain conformation, degree of crystallinity, and crystalline phase transformation were investigated by a combination of vibrational spectroscopy (infrared and Raman), differential scanning calorimetry, and wide‐angle X‐ray diffraction (WAXD). It was established that the α′‐crystal's phase of poly(lactic acid) films does not transform into either an α or β crystals on uniaxial drawing at a fixed draw ratio of 4. However, the degree of crystallinity was significantly increased on deformation. The structural change as a function of deformation also promotes an increase in the strain‐induced enthalpic relaxation endothermic peak appearing near the glass transition region. While the overall changes in physical properties can be attributed to the changes in the degree of crystallinity as a function of strain rate, polarized Raman spectra, and WAXD clearly illustrated changes and the differences in the amorphous and crystalline orientation as a function of processing conditions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1446–1454, 2011  相似文献   

19.
In order to study the effect of the molecular weight on the crystallinity and conformational changes of poly(β-benzyl L aspartate) in films, a previous study on high molecular weight samples has been extended to included polymers of low molecular weight, about 3.3 × 103. Films were prepared from chloroform solution by quick or slow evaporation at room temperature. The conformation and the thermal behavior were studied by means of infrared spectroscopy and differential scanning calorimetry. All films dried quickly are composed of polymer in the left-handed α-helical form. All samples studied which have molecular weights above 2.3 × 104 are similar in crystallinity and the left-handed α-helices in them crystallize to ω-helices during slow evaporation. In the low molecular weight region, however, the left-handed α-helices reverse to right-handed α-helices during slow evaporation, and the right-handed α-helices, in turn, reverse and crystallize to highly ordered ω-helices upon heat treatment, although there is some simultaneous conversion to the β-form. The transition temperatures of the quick-dried films for conversion from the left-handed α-helix to the ω-helix and from the ω-helix to the β-form increase linearly with increasing molecular weight up to about 2 × 104, but no large molecular weight dependence is observed beyond that region.  相似文献   

20.
Soluble and inherent photoimageable polyimides with improved photopatterning features were prepared from α,α‐(4‐amino‐3,5‐dimethylphenyl)phenylmethane and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride. The polyimides possessed good combined chemical and physical properties: thermal stability was observed, with an initial thermal decomposition temperature of 565 °C and a high glass‐transition temperature of 318 °C. Homogeneous polyimide solutions in common organic solvents with solid contents as high as 20 wt % were prepared. These solutions had a shelf life greater than 3 months. The polyimides had high electric insulating properties and low dielectric constants and dissipation factors. Fine patterns were processed by direct exposure of the polyimide coatings to UV i‐line, followed by development with an organic developer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3012–3020, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号