首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
New high temperature aromatic polybenzoxazinones of high molecular weight have been prepared by the cyclopolycondensation of 4,4′-diaminobiphenyl-3,3′-dicarboxylic acid (I) with aromatic dicarboxylic acid halides (II). The low temperature solution polymerization techniques afforded poly(amic acid) (III) of high molecular weight in the first step. An open-chain precursor subsequently underwent thermal cyclodehydration along the polymer chain at 200–350°C. in the second step, to give in quantitative yield a fully aromatic polybenzoxazinone (IV) of outstanding heat stability both in nitrogen and in air. The poly(amic acid) is soluble in N-methyl-2-pyrrolidone, and tough, transparent films can be cast from solution. Insoluble aromatic polybenzoxazinone films which possess excellent oxidative and thermal stability were obtained by the heat treatment of the polyamic acid. A detailed account of polymerization conditions in the low temperature solution polymerization of polybenzoxazinones is given, and the reaction mechanisms of cyclopolycondensation of poly(amic acids) and the formation of polybenzoxazinones are discussed.  相似文献   

2.
Poly-p-benzamide of high molecular weight (ηinh = ~ in H2SO4) was obtained by the direct polycondensation reaction of p-aminobenzoic acid (p-ABA) by means of diphenyl and triaryl phosphites in N-methylpyrrolidone (NMP)-pyridine solution containing lithium and calcium chlorides. Molecular weight of polymer varied with the amount of these salts, showing maximum values at the concentration of about 4 wt-% of LiCl or about 8 wt-% of CaCl2 in the reaction mixture. The reaction temperature at around 80°C gave a polymer of the highest viscosity. The polycondensation reaction was also affected by monomer concentration, solvents, and tertiary amines like pyridine. Similarly, aromatic polyamides with high molecular weight (ηinh values up to 1.34 in H2SO4) were prepared from isophthalic acid and aromatic diamines, whereas terephthalic acid gave only low-viscosity polymers.  相似文献   

3.
A novel polyamide condensation reaction of aromatic diamines (usually as strong inorganic acid salts) and aromatic diacids in SO3 has been discovered. para-Phenylenediamine was polymerized with terephthalic acid in SO3 at 20–47% polymer concentration to form highly anisotropic (liquid crystalline) sulfonated poly(p-phenyleneterephthalamide) (SPT) solutions (dopes) with inherent viscosities as high as 1.6. Sulfonation of the aromatic diamine ring was a major side reaction. The effects of reaction variables such as temperature, time, monomer concentration, stoichiometry, and solvent acidity on molecular weight were studied. The dopes were spun to fiber, but tensile properties were limited by coagulation problems associated with hydrophilicity of the highly sulfonated polymer. Thermogravimetric analysis of SPT at 20°C/min showed weight loss only above 450°C.  相似文献   

4.
New aromatic diamines containing phenyl-pendant thiazole units were synthesized in three steps starting from p-nitrobenzyl phenyl ketone. Novel aromatic polyamides containing phenyl-pendant thiazole units were prepared by the low-temperature solution polyconden-sation of 1,4- (or 1.3-) bis[5-(p-aminophenyl)-4-phenyl-2-thiazolyl] benzene with various aromatic dicarboxylic acid chlorides in N,N-dimethylacetamide. High molecular weight polyamides having inherent viscosities of 0.5–3.0 dL/g were obtained quantitatively. The polythiazole-amides with m-phenylene, 4,4′-oxydiphenylene, and 4,4′-sulfonyldiphenylene units were soluble in N-methyl-2-pyrrolidone, N,N-dimethylacetamide, and pyridine, and gave transparent flexible films by casting from the solutions. These organic solvent-soluble polyamides displayed prominent glass transition temperatures (Tg) between 257 and 325°C. On the other hand, the polythiazole-amides with p-phenylene and 4,4′-biphenylene units were insoluble in most organic solvents, and had no observed Tg. All the polythiazole-amides started to decompose at about 400°C with 10% weight loss being recorded at 450–525°C in air. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
The reaction of terephthalic acid (TA) and para-phenylenediamine sulfate (PPD-S) in sulfur trioxide to form anisotropic, sulfonated poly(p-phenyleneterephthalamide) (SPT) dopes was reported in Part IV of this series. We have found now that the TA/PPD-S polymerization is only one example of a more general polyamide condensation reaction of aromatic diamines and aromatic diacids. Sulfonation of the aromatic diamine ring during TA/PPD-S polymerization in SO3 was a major side reaction. Sulfonation was reduced or eliminated by aromatic diamine ring substitution with unreactive substituents, particularly chlorine and fluorine. Polymerization of 2,3,5,6-tetrafluoro-phenylenediamine with TA in SO3 at 80°C (18% concentration) produced unsulfonated poly(tetrafluoro-para-phenyleneterephthalamide) (F-PPT) with an inherent viscosity of 2.2. The halogenated, all-para aromatic polymers formed highly anisotropic (liquid crystalline) dopes. Monomers that formed polymers in which the chain bond angle deviated from 180° (e.g., meta-oriented monomers) yielded only isotropic polymer solutions. The mechanism and rate of diamine–diacid reactivity in SO3 was related to diamine basicity. Whereas the less basic aromatic diamines (as sulfates) polymerized with aromatic diacids in SO3, the more basic aliphatic diamines (as sulfates) would not. Aliphatic, cycloaliphatic, and aryl-aliphatic diacids were degraded by or reacted with the solvent (SO3). Thermogravimetric analyses of F-PPT and monosulfonated poly(chloro-para-phenyleneterephthalamide) at 20°C/min showed weight loss only above 380 and 370°C, respectively.  相似文献   

6.
Wholly aromatic polyamide-imides with high molecular weight (ηinh up to 1.7 dL/g in DMAc–5% LiCl) were obtained by the direct polycondensation reaction of N-[p-( or m-) carboxyphenyl]trimellitimide [p-(or m-)CPTMI] and aromatic diamines by means of di- or triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)-pyridine solution in the presence of lithium or calcium chloride. The factors affecting the phosphorylation reaction were investigated, in particular for the reaction of p-CPTMI and 4,4'-oxydianiline (ODA). Molecular weight of polymers varied with the amount of metal salts and showed maximum values at the concentration of 10-15 wt % in the reaction mixture. Monomer concentration of 0.2 mol/L produced polymer of the highest viscosity. Higher concentrations produced gelation and yielded polymers of low molecular weight. A reaction temperature of about 120°C gave the best results. Among the solvents tested, NMP was significantly the most effective for the reaction. The highest inherent viscosity values, ηinh = 1.35 and 1.58 dL/g, were obtained with triphenyl phosphite (TPP)/monomer and diphenyl phosphite (DPP)/monomer molar ratios of 2.0. Excessive addition of phosphites did not cause a serious deleterious effect on the molecular weight of polymer. Polycondensations of several combinations of p-or m-CPTMI and aromatic diamines were carried out with satisfactory results.  相似文献   

7.
High molecular weight polybenzoxazinones have been prepared by cyclo-polycondensation reaction of 4,4′-diamino-3,3′-biphenyldicarboxylic acid with a variety of aromatic carbonyl compounds using a solution polymerization technique in polyphosphoric acid. From the model reactions of anthranilic acid, and 4,4′-diamino-3,3′-biphenyldicarboxylic acid with benzoyl chloride in polyphosphoric acid, it is established that the cyclopolycondensation proceeds through the formation of an open-chain tractable precursor, polyamic acid of high molecular weight (ninh = 2.66) in the first step, which subsequently undergoes thermal or chemical cyclodehydration along the polymer chain, to yield, in the second step, a fully aromatic polybenz-oxazinone. Polybenzoxazinones thus obtained have excellent thermal stability both in nitrogen and in air.

The optimum polymerization conditions for obtaining polyamic acid of high molecular weight are determined by the study of reaction variables such as polymerization temperatures, monomer concentrations, and reaction time as well as the effect of P2O5 concentrations in polyphosphoric acid.  相似文献   

8.
N-phenylated aromatic polyureas were synthesized by the polyaddition of dianilino compounds to aromatic diisocyanates in sym-tetrachloroethane at around 100°C. Factors that influence the reaction, such as monomer concentration, reaction solvent, catalyst, temperature, and time, were studied to optimize the conditions for the preparation of high molecular weight polymers. Compared with the analogous unsubstituted aromatic polyureas, the N-phenylated polyureas were almost amorphous and soluble in a variety of solvents and had low glass transition temperatures. Some of the polymers could be cast into transparent flexible films from chloroform solutions.  相似文献   

9.
Schmidt reaction of arylaldehydes, ketones and aromatic carboxylic acids using task-specific ionic liquid, [bmim]N3 in the presence of AcOH/H2SO4 proceeds at 50–60 °C within 2–4 h to give the corresponding products. Benzaldehydes containing electron releasing groups afforded to the related benzamide derivatives. Benzonitrile derivatives were formed from the reaction of benzaldehydes containing electron withdrawing groups under these conditions. High yields of the related amides and anilines were obtained from the reaction of a variety of ketones and aromatic carboxylic acids, respectively, utilizing this procedure.  相似文献   

10.
A series of polyaryloxysilanes was prepared from aromatic diols and dianilino- and diphenoxysilanes. High molecular weight polymers were obtained at temperatures of 200°C. or higher by using melt-polymerization procedures. The polymers, which combine the structures of silicones and polyaromatics, possessed high thermal stabilities and were obtained as materials which (1) failed to melt or soften at 350°C., (2) were gumlike at elevated temperatures, or (3) were soluble, film- and fiber-forming polymers capable of being processed as conventional thermoplastics and having potentially useful mechanical properties. The preparation of monomers, general polymerization procedures, and certain structure-property relationships for the thermoplastic polyaryloxysilanes are considered.  相似文献   

11.
N-Phenylated aromatic polyamide-esters with high molecular weights were synthesized by the high-temperature solution polycondensation in nitrobenzene at 200°C from combinations of m- and p-anilinophenol and isophthaloyl and terephthaloyl chloride. Reaction variables such as monomer concentration, solvent, temperature, and time were studied to optimize the reaction conditions for the preparation of high molecular weight polymers. Some of the N-phenylated aromatic polyamide-esters have glass transition temperatures around 190°C and good solubility in chlorinated and amide solvents. These polymers gave transparent flexible films by solution-casting. Copolymers from p-anilinophenol and the two diacid chlorides were also synthesized and characterized.  相似文献   

12.
The direct thermal condensation of aromatic methyl esters with aromatic amines and hydrazides was studied. Using model compounds, it was learned that N-methylation of amines (both aromatic and aliphatic) and hydrazides is inherent at temperatures required for condensation polymerization. This side reaction prevents attainment of high molecular weight polyamides, polyhydrazides, or polyoxadiazoles from the corresponding difunctional aromatic monomers by heat alone. Reported catalysts for the condensation reaction do not prevent the side reaction.  相似文献   

13.
5,5-Bis[4-(4-carboxyphenoxy)phenyl]hexahydro-4,7-methanoindan ( 3a ) and 5,5-bis[4-(4-aminophenoxy)phenyl]hexahydro-4,7-methanoindan ( 3b ) were prepared in two main steps starting from the aromatic nucleophilic halogen-displacement of p-fluorobenzonitrile and p-chloronitrobenzene, respectively, with 5,5-bis(4-hydroxyphenyl)hexahydro-4,7-methanoindan in the presence of potassium carbonate in N,N-dimethylformamide (DMF). Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides having polyalicyclic cardo units were directly polycondensated from dicarboxylic acid 3a with various aromatic diamines, or from diamine 3b with various aromatic dicarboxylic acids in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. High molecular weight polyamides with inherent viscosities between 0.73 and 1.44 dL/g were obtained. All polymers were readily soluble in polar aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc) and afforded transparent, flexible, and tough films by solution casting. The glass-transition temperatures (Tg) of these aromatic polyamides were in the range of 219–253°C by DSC, and the 10% weight loss temperatures in nitrogen and air were above 467 and 465°C, respectively. A comparative study of some polyamides with an isomeric repeat unit is also presented. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4510–4520, 1999  相似文献   

14.
A Vilsmeier adduct derived from arylsulfonyl chlorides and DMF in pyridine was successfully used as a new condensating agent for the synthesis of aromatic polyesters by the direct polycondensation of aromatic dicarboxylic acids and bisphenols and also of hydroxybenzoic acids. Polymers of high molecular weights (M?w = 78,000) with relatively narrow molecular weight distribution (M?w/M?n ≈ 3.0) were prepared by reacting aromatic dicarboxylic acids with the adduct in pyridine, followed by addition of bisphenols. The polycondensation was significantly affected by the amount of DMF, the nature of the arylsulfonyl chlorides, the conditions of initial reaction of the acids with the adduct, and the rate of reaction with bisphenols. The process was adaptable to the direct polycondensation of hydroxybenzoic acids, affording polymers of high molecular weight (ηinh = 1.73).  相似文献   

15.
In the current paper, a comparative study on the direct solid state polycondensation (DSSP) reaction of different terephthalate based semi‐aromatic salts (XT salts, X = 4–18) in the TGA micro‐reactor is reported. High purity XT salts were prepared in solution and were used as starting materials for DSSP. The reaction temperature (TDSSP) for each salt was suitably selected as 20 °C–30 °C below the melting point Tm of the respective salt. The PAXT products were characterized by TGA/DSC, liquid 1H‐NMR, and SEM. In the DSSP of XT salts, some diamine is always lost to the gas phase and as a consequence, the attainable molecular weight of the polymer formed gets limited by the unbalance of acid and amine end‐groups. The TGA curves show that as the diamine length increases and its volatility decreases, higher molecular weights are obtained. SEM pictures of the products reveal true solid character during the polymerization reaction up to and including PA10T, whereas PA5T, PA12T, and PA18T reveal stickiness and agglomeration during reaction. A possible mechanism explaining such behaviour is also provided. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2493–2506  相似文献   

16.
Based on the Schmidt reaction and an iodolactone ring expansion reaction, two different synthetic routes to substituted 2,3,4,5-tetrahydro-1H-2-benzazepines were developed. The Schmidt reaction on 2,3-dihydro-2H-1-naphthalenone ( 1 ) gave 3 , the product resulting from the alkyl group migration, as the major product instead of the tetrazole 2. This prompted the investigation of the Schmidt reaction on aromatic ketones 8 and 12. The product 9 due to alkyl group migration was the major product of the Schmidt reaction on 2-methyl-3,4-dihydro-2H-1-naphthalenone ( 8 ). The β-keto diester 12 gave a mixture of decarb-oxylated lactams after the Schmidt reaction. In this case, the lactam 13 resulting from the migration of the aromatic ring dominated over the other lactam 14. When lactam 14 was subjected to nitration, a single regioisomer was produced and transformed to the bromo alcohol 19. The other approach was based on the single pot ring expansion of the iodolactone 22 to the lactam 23 in the presence of methanolic ammonia. The iodolactone 22 was readily prepared from 2-allylbenzoic acid.  相似文献   

17.
Intrinsic viscosities of poly(p-phenylene terephthalamide) (PPTA) and poly(m-phenylene isophthalamide) (PMIA) samples of the same molecular weight are determined in 90%, 96% and 100% sulfuric acid at temperatures from 0 to 130°C. Conditions are established under which the degree of coiling of PPTA molecule is close to that for PMIA. Experimental data are compared with the results of theoretical calculations of the Kuhn segment length. In the light of this comparison, some quantitative characteristics of the deformational flexibility mechanism for aromatic polyamide chains and the hindrance to intramolecular rotation are discussed. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
From the viewpoint of the suppression of the petroleum consumption, aromatic poly(ether ketone)s (PEKs) were prepared by the nucleophilic aromatic substitution polymerization of 2,5‐bis(4‐fluorobenzoyl)furan (BFBF) synthesized from biomass and aromatic bisphenols. The model reaction of BFBF and p‐methoxyphenol revealed that BFBF possessed enough reactivity for the nucleophilic aromatic substitution reactions. The polymerizations of BFBF and aromatic bisphenols afforded high molecular weight polymers with good yields in N‐methylpyrrolidone and diphenyl sulfone for several hours. The longer polymerization time brought about the formation of insoluble parts in any solvents and reduction of molecular weight. The obtained PEKs were thermoplastics and exhibited good thermal stability, mechanical properties, and chemical resistance comparable to common high‐performance polymers. The thermal properties were tunable with the structure of bisphenols. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3094–3101  相似文献   

19.
A series of novel aromatic polyamides containing 2,2′-bipyridine moiety were synthesized by polycondensation of 2,2′-bipyridine-5,5′-dicarboxylic acid ( 2 ) with various aromatic diamines in hexamethylphosphoramide (HMPA) containing lithium chloride. The resulting polyamide solutions in 98% sulfuric acid and in HMPA-LiCl exhibited lyotropic liquid crystal phases. The phase transition behaviors were studied by polarizing microscopy and X-ray diffraction. The polyamides also formed metal complexes with cis-dichlorobis(bipyridine)ruthenium dihydrate [cis-Ru(bpy)2Cl2 · 2H2O] which was supported by changes in electronic spectra.  相似文献   

20.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号