首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cationic polymerization of propenyl n-butyl ether (PBE) in methylene chloride with boron fluoride etherate at ?78°C. has been studied. The copolymerization of PBE with vinyl n-butyl ether (VBE) showed that both the isomers are more reactive than VBE, and their monomer reactivity ratios were found to be:  相似文献   

2.
To elucidate the effect of the introduction of a methyl group in the β-position of a vinyl monomer, propenyl alkyl ethers were copolymerized with vinyl ethers having the same alkoxy group. Propenyl alkyl ethers with an unbranched alkoxy group (ethyl or n-butyl propenyl ether) were more reactive than the corresponding vinyl ethers. This behavior is quite different from that of β-methylstyrene derivatives. However, propenyl alkyl ethers with branched alkoxy groups at the α carbon atom (isopropyl or tert-butyl propenyl ether) were less reactive than the corresponding vinyl ethers. Also, cis- isomers were more reactive than the trans isomers, regardless of the kind of alkoxy group and the polarity of the solvent.  相似文献   

3.
Methyl, ethyl, and isopropyl butenyl ethers, CH3CH2CH?CHOR, were polymerized with homogeneous catalysts at ?78°C. Toluene, methylene chloride, and nitroethane were used as solvents, and BF3O(C2H5)2 and SnCl4·CCl3CO2H were used as catalysts. The stereoregularity of the polymers were compared by x-ray diagrams and infrared absorption ratios. The stereoregularity of polymers increased with increasing content of the trans isomer in the monomer and with increasing polarity of the solvent. In the polymerization of methyl and ethyl butenyl ethers, crystalline polymers were obtained from both the trans and cis isomers. The crystalline polymer prepared from the trans isomer and that from the cis isomer had the same steric structure. This behavior is quite different from that observed in the polymerization of propenyl ethers. It is concluded that the bulkiness of the group on the olefinic β-carbon plays an important role in the stereospecific polymerization of α,β-disubstituted olefins.  相似文献   

4.
The di-isotacticity of poly(methylpropenyl ether) obtained by the cationic polymerization has been studied by NMR spectra. The NMR spectra of β-methyl protons of the polymer are decoupled from the β-methine proton spectra to determine the di-isotactic fraction in a polymer. The signals of β-methyl protons at 8.78 and 8.89 τ are estimated as spectra based on threo- and erythro-di-isotactic diads, respectively. With BF3·O(C2H5)2 as a catalyst, the trans monomer yields a crystalline polymer and its structure is threo-di-isotactic. Otherwise, cis monomer produces an amorphous polymer, and it is a mixture of threo- and erythro-di-isotactic structure. From these results, it is concluded that the double bond in trans monomer is opened exclusively in the cis type, and in cis monomer cis- and trans-openings take place at almost the same rate.  相似文献   

5.
Isobutyl propenyl ether [IBPE; CH3CH=CH? OCH2CH(CH3)2] was polymerized with a mixture of hydrogen iodide and iodine (HI/I2 initiator) in n-hexane at ?40°C to yield living polymers with a nearly monodisperse molecular weight distribution (MWD) (M?w/M?n ≈ 1.1). The number-average molecular weight (M?n) of the polymers increased proportionally to IBPE conversion and further increased when a new monomer feed was added to a completely polymerized solution. The M?n was controlled by the initial concentration of hydrogen iodide if the acid was charged in excess over iodine. In polymerization by iodine alone the M?n of the polymers obtained in nonpolar solvents (n-hexane and toluene) also increased with conversion, but their MWD was broader (M?w/M?n = 1.3–1.4) than in the HI/I2-initiated systems under similar conditions. The iodine-initiated polymerization in polar CH2Cl2 solvent, in contrast, led to nonliving polymers with a broad MWD (M?n/M?n = 1.6–1.8) and M?n, independent of conversion. The living polymerization of IBPE was also compared with that of the corresponding isobutyl vinyl ether, to determine the effect of the β-methyl group in IBPE.  相似文献   

6.
The cis- and trans-propenyl alkyl ethers were polymerized by a homogeneous catalyst [BF3·O(C2H5)2] and a heterogeneous catalyst [Al2(SO4)3–H2SO4 complex]. Methyl, ethyl, isopropyl, n-butyl and tert-butyl propenyl ethers were used as monomers. The steric structure of the polymers formed depended on the geometric structures of monomer and the polymerization conditions. In polymerizations with BF3·O(C2H5)2 at ?78°C., trans isomers produced crystalline polymers, but cis isomers formed amorphous ones except for tert-butyl propenyl ether. On the other hand, highly crystalline polymers were formed from cis isomers, but not from the trans isomers in the polymerization by Al2(SO4)3–H2SO4 complex at 0°C. The x-ray diffraction patterns of the crystalline polymers obtained from the trans isomers were different from those produced from the cis isomers, except for poly(methyl propenyl ether). The reaction mechanism was discussed briefly on these basis of these results.  相似文献   

7.
cis- and trans-Propenyl isobutyl ethers were copolymerized with each other and each with vinyl isobutyl ether separately under various conditions. In homogeneous polymerizations a cis-β-methyl substitution on vinyl isobutyl ether apparently enhanced the reactivity, whereas the trans substitution tended to reduce it slightly. In heterogeneous catalysis, on the other hand, a β-methyl group on the vinyl ether, whether cis or trans, greatly reduced the reactivity, probably because of the steric hindrance toward the adsorption of monomers on the catalyst surface. The relative reactivities of cis- and trans-propenyl isobutyl ethers ranged from 2 to 20, depending on the polymerization conditions. The polymer end formed from the cis monomer exhibited special steric effects. It was concluded that even in homogeneous media the rotation of the polymer end around the terminal carbon–carbon bond is restricted.  相似文献   

8.
9.
In order to clarify the propagation reaction, vinyl ether was copolymerized with the corresponding alkenyl ether under various conditions. cis-Propenyl ether (cis-PE) was several times more reactive than trans-PE and the corresponding vinyl ether in the copolymerization catalyzed by BF3 · O(C2H5)2 in toluene. However, the reactivity of cis-PE relative to trans-PE and the vinyl ether was found to be greatly decreased with increasing polarity of the solvent and to be very close to unity in such polar solvents as nitroethane. On the other hand, the reactivity of trans-IBPE relative to IBVE was scarcely changed by polymerization conditions. Also, the nature of the initiator and polymerization temperature affect the reactivity of cis-PE relative to the vinyl ether. These phenomena were explained by the relative stability of the bridged and open car bonium ions based on the polarity of the solvent and steric hindrance due to substituents in the trans isomer.  相似文献   

10.
α-Methoxyphenylmethylium hexachloroantimonate was used as a novel initiator for the polymerization of α,β-disubstituted oxiranes such as cyclohexene oxide (CHO) and 2-butene oxide (trans and cis) (2-BO) at ?78°C with dichloromethane or dichloromethane-toluene mixtures as solvents. The CHO polymerization mixture became turbid and the polymer precipitated in dichloromethane. The CHO polymerization proceed quantitatively in dichloromethane–toluene mixtures. The molecular weight distribution of polyCHO obtained was bimodal regardless of the solvent used. The polymerization of trans-2-BO was heterogeneous in both dichloromethane and dichloromethane–toluene mixture. The polymerization mixtures of cis-2-BO were transparent but reached a limit yield which was less than the polymer yield of trans-2-BO. Furthermore, the microstructure of the poly2-BOs were analyzed by Vandenberg's method and the results confirmed Vandenberg's finding that inversion of configuration occurs in the propagation step.  相似文献   

11.
12.
The four α,α,α, β,β,β,-hexamethyl α-hydrogen Coα, Coβ-dicyanocobyrinates 2b, d–f , with a free b-, d-, e-, and f-propionic-acid function, respectively, were prepared by partial hydrolysis of heptamethyl Coα, Coβ-dicyanocobyrinate (cobester; 1 ) in aqueous sulfuric acid. The cobester monoacids 2b, d–f were obtained as a ca. 1:1:1:1 mixture which was separated. The monoacids were purified by chromatography and isolated in crystalline form. The position of the free propionic-acid function was determined by an extensive analysis of 2b, d–f using 2D-NMR techniques; an analysis of the C,H-coupling network topology resulted in an alternative assignment strategy for cobyrinic-acid derivatives, based on pattern recognition. Additional information on the structure of the most polar of the four hexamethyl cobyrinates, of the b-isomer 2b , was also obtained in the solid state from a single-crystal X-ray analysis. Earlier structural assignments based on 1D-NMR spectra of the corresponding regioisomeric monoamides 3b, d–f (obtained from crystalline samples of the monoacids 2b, d–f ) were confirmed by the present investigations.  相似文献   

13.
14.
Cationic copolymerizations of anethole were carried out under various conditions in order to confirm the relative reactivities of its geometric isomers. trans-Anethole was more reactive than cis-anethole in copolymerizations with p-methoxystyrene or styrene, but less reactive in the mutual copolymerization of cis- and trans-anethole; i.e., the trans isomer was more reactive to a growing chain end with little steric hindrance. Thus the intrinsic reactivity of an olefinic double bond to carbonium ion is greater for the trans isomer than for the cis isomer. This idea is supported by 13C NMR spectra, since the signal of the olefinic β-carbon of the trans isomer is at higher field than that of the cis isomer. The behavior of anethole was compared with the results observed in vinyl ethers, where the cis isomer was always more reactive irrrspective of the structure of the growing chain end. In addition, the dependence of monomer reactivity ratios on polymerization conditions is discussed.  相似文献   

15.
Methyl α,β,β-trifluoroacrylate (MTFA) was grafted onto polyethylene (PE) film and fluorine-containing films to make ion-exchange membranes. In the case of PE the grafting yield was not influenced by the presence of trifluorotrichloroethane (Freon 113) in the reaction mixture, while the presence of methanol decreased the grafting yield. The transversal distribution of graft chains in the film observed by electron-probe x-ray microanalysis showed that when the grafting was carried out in the presence of Freon the amount of graft chains in the central part of PE film was much larger than that at the film surface and that the grafts obtained in the absence of Freon were located mainly at the film surface. The electric resistance of the graft PE film obtained in the presence of Freon decreased more than that of the one obtained in the absence of Freon. The weight loss of the graft films in H2O2 solution was negligibly small.  相似文献   

16.
17.
18.
Radiation-induced terpolymerizations of methyl α,β,β-trifluoroacrylate (MTFA) with tetrafluoroethylene (TFE) and α-olefins, such as ethylene, propylene, and isobutylene, were carried out in bulk at 25°C for the purpose of controlling the content of ester group in the MTFA-α-olefin alternating copolymers. These monomers polymerized to form alternating terpolymers which contained 50 mole % α-olefin in a wide range of monomer composition. The content of MTFA, namely, the ester group in polymer, can be varied without destruction of the alternating structures between fluoroolefins (MTFA, TFE) and α-olefin by changing the MTFA/TFE ratio in the monomer mixture. The relative reactivities of MTFA and TFE in the terpolymerization were discussed according to kinetic treatments by free propagating and complex mechanisms. The relation between the MTFA/TFE ratio in the monomer mixture and that in terpolymer was explained favourbly by the complex mechanism. It was also concluded that the relative reactivity of MTFA is larger than that of TFE in the terpolymerizations.  相似文献   

19.
20.
The title compound was obtained by reaction of the methyl tris(indenyl) uranium complex with trifluoroethanol. A crystal structure reveals that there are two symmetrically independent molecules in the unit cell. The coordination geometry about the uranium atom is a flattened tetrahedron with three π-bonded indenyl rings and one σ-bonded trifluoroethanol oxygen atom. The U---O bonds are remarkably short. The U---C distances indicate trihapto mode of bonding of the indenyl rings. Variation of the ligand X in the U(C9H7)3X class of complexes would not affect the stereochemistry about the U atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号