首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The emulsion polymerization of vinyl acetate has generally been considered a special type of reaction that is not covered by the Smith-Ewart theory. Although the number of particles depends on coalescence rates and can not be predicted by this theory, the polymerization rate data are consistent with the general concepts of Smith and Ewart, including reaction primarily inside swollen polymer particles, escape of radicals from particles, and termination of chains inside the particles. Allowing for rapid exchange of radicals following chain transfer leads to a simple equation which fits much of the published data for cases of both very low and very high values of n , the average number of radicals per particle.   相似文献   

3.
Particle number and size data from a series of seeded, emulsifier-free, vinyl acetate emulsion polymerization experiments have been analyzed with the aid of polymerization and particle growth models. A secondary population of particles, with a significantly greater number concentration than the seed, was nucleated in all experiments. The two populations (seed and new) had rather narrow size distributions and large diameters. Hence the reactions were in the area normally associated with Smith–Ewart Case III kinetics. Water-phase termination reactions can be important in this reaction region but radical desorption from such large particles does not significantly influence the kinetics. The results of the analysis were used to evaluate the magnitude of water-phase termination; to estimate radical capture coefficients; and to evaluate competitive particle growth.  相似文献   

4.
Equipment has been designed and assembled in such a way that direct microscopic observation of polymer particle formation in suspension polymerization of vinyl chloride and vinyl acetate is possible. The apparent mode of transformation from monomer droplets into polymer particles has thus been studied under two sets of conditions: (1) with agitation and (2) without agitation. In both cases, as the initial vinyl acetate/vinyl chloride ratio was raised, the apparent change in the shape and transparency of particles occurring during the course of polymerization became less evident. In vinyl chloride homopolymerization and vinyl acetate–vinyl chloride copolymerization with relatively high vinyl chloride concentrations, the polymer particles burst during the course of polymerization. Some factors which affect the change in the size of particles are also discussed.  相似文献   

5.
6.
The preparation of poly(vinyl acetate) with well-controlled structure has received a great deal of interest in recent years because of a large number of developments in living radical polymerization techniques. Among these techniques, the use of reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization has been employed for the controlled polymerization of vinyl acetate due to the high susceptibility of this monomer towards chain transfer reactions. Here, a novel water-soluble N,N-dialkyl dithiocarbamate RAFT agent has been prepared and employed in the emulsion polymerization of vinyl acetate. The kinetic results reveal that the polymerization nucleation mechanism changes from homogeneous to micellar and RAFT-generated radicals can change the kinetic behavior from conventional emulsion polymerization to living radical polymerization. At higher concentrations of the modified RAFT agent, as a result of an aqueous phase reaction between RAFT and sulfate radicals, relatively more hydrophobic radicals are generated, which favors entry and propagation into micelles swollen with monomer. This observation was determined from the investigation of the polymerization rate and measurements of the average particle diameter and the number of particles per liter of the aqueous phase. Molecular weight analysis also demonstrated the participation of the RAFT agent in the polymerization in such a way as to restrict chain transfer reactions. This was determined by examining the evolution of polymer chain length and attaining higher molecular weights, even up to 50?% greater than the samples obtained from the conventional emulsion polymerization of vinyl acetate in the absence of the synthesized modified RAFT agent.  相似文献   

7.
The emulsion polymerization of vinyl acetate was investigated at low ionic strengths and has quite unusual kinetics. The rate of polymerization is dependent on the initiator concentration to the first power and independent of soap concentration. In seeded polymerizations, the rate of polymerization depends on initiator to the 0.8 power, particle concentration to the 0.2 power, and monomer volume to 0.35 power. In all cases the rate of polymerization is almost independent of monomer concentration in the particles until 85–90% conversion. These results were rationalized by the following mechanism: (a) polymerization initiates in the aqueous phase because of the solubility of the monomer and is stabilized there by adsorption of ionic soap on the growing polymer molecule; (b) the growing polymer is swept up by a particle at a degree of polymerization (under our conditions) of about 50–200. Growth continues in the particle. This sweep-up is activation-controlled as both particle and polymer are charged. (c) Chain transfer to the acetyl group of monomer gives a new small radical which cyclizes to the water-soluble butyrolactonyl radical, and reinitiates polymerization in the aqueous phase; (d) the main termination step is reaction of an uncharged butyrolactonyl radical with a growing aqueous polymer radical. A secondary reaction at low ionic strength is sweep-up of an aqueous radical by a particle containing a radical. At high ionic strength, this is the major termination step. The unusual kinetic steps are justified by data from the literature. They are combined with the usual mechanisms operating for vinyl acetate polymerization and kinetic equations are derived and integrated. The integral equations were compared with the experimental data and shown to match it almost completely over the whole range of experimental variables.  相似文献   

8.
The emulsion polymerization of vinyl acetate (VAc) was carried out by using redox initiation systems of different persulfate cations such as potassium persulfate (PPS), sodium persulfate (SPS), and ammonium persulfate (APS); each of them was coupled with developed acetone sodium bisulfite adduct (AcSBS) as a reducing agent. The rate of polymerization was found to be dependent on the initiator concentration to the powers 1.04, 1.02, and 0.34, respectively. The effect of the different cations of the oxidizing agents upon the stability of the prepared emulsion lattices was studied by using the sedimentation method. The effect of the different cations on the morphological characteristics of some of the produced lattices was also studied. Finally, the activation energies of these reactions for potassium, sodium, and ammonium persulfate were found to be 0.84 × 104, 1.92 × 104, and 6.68 × 104 J/mol, respectively. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3141–3149, 1997  相似文献   

9.
10.
Emulsion polymerization of vinyl acetate with sodium laryl sulfate as emulsifier and potassium persulfate as initiator was studied and found to follow the rate equation suggested by Harriot:   相似文献   

11.
12.
This article presents a study on the engineering of multimodal distributions in semibatch emulsion polymerizations with nonionic surfactants. Various methods of producing multimodal distributions are demonstrated, and the sensitivity of the process to the properties of the reagents are analyzed. A test‐bed emulsion polymerization system, equipped with instrumentation to measure particle size distribution (capillary hydrodynamic fractionator) and monomer conversion (densitometer and flow meters), is used for this purpose. The process is monitored and controlled with an industrial distributed control system, which enables the automated operation of the process through sequential or logic controllers operating over lower level proportional integral derivative controllers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2232–2249, 2003  相似文献   

13.
A photoinitiation process was investigated to develop a rapid and well‐controlled RAFT polymerization method applied to vinyl acetate (VAc) using methyl (ethoxycarbonothioyl)sulfanyl acetate (MESA) and bis(2,4,6‐trimethylbenzoyl)phenylphosphine oxide as the RAFT agent and photoinitiator, respectively. MESA was selected as the photochemically inert RAFT agent to minimize photolysis of the thiocarbonylthio groups during polymerization. Poly(vinyl acetate) with a prespecified well‐controlled molecular weight (MW) and a narrow MW distribution was successfully synthesized. The polymerization reaction proceeded as a living polymerization and was remarkably rapid compared with approaches that use thermally initiated processes with a very short induction period. A detailed kinetic study of the mechanism underlying the polymerization reaction, however, revealed that the chain ends containing xanthate moieties were not perfectly stable upon UV‐irradiation, and they generated radicals via homolytic cleavage. This reaction appeared to proceed by a combination of a degenerative transfer RAFT mechanism and a dissociation‐combination mechanism. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A new class of poly(vinyl acetate) (PVAc)/silica nanocomposite particles was successfully prepared in aqueous solution through a facile synthetic process. First, vinyl functionalized silica nanoparticles (VFSs) were synthesized using one-step method in aqueous emulsion, and then the vinyl groups located on the surface of VFSs were used to induced in situ polymerization of vinyl acetate. Scanning electron microscopy (SEM) images showed that VFSs and PVAc/silica nanocomposite particles all revealed highly monodispersed and uniform spheres. Especially, PVAc/silica nanocomposite particles obtained from transmission electron microscopy images presented an obvious core–shell structure, and the thickness of PVAc shell grafting on the surface of VFSs core was about 17 nm. In addition, the influence of the hydrolyzed and condensed time of vinyl triethoxysilane on the size and size distribution of VFSs was also investigated. The results of dynamic light scattering and SEM analysis indicated that the size and size distribution of VFSs decreased gradually with the extension of the reaction time from 6 to 48 h. Moreover, the structures and thermal properties of the samples were characterized via FT-IR and heat-flow DSC–TG.  相似文献   

15.
During the emulsion polymerization of vinyl acetate (VAc) using poly(vinyl alcohol) (PVA) as stabilizer and potassium persulfate as initiator, the VAc reacts with PVA forming PVA-graft-PVAc. When the grafted polymer reaches a critical size it becomes water-insoluble and precipitates from the aqueous phase contributing to the formation of polymer particles. Since particle formation and therefore the properties of the final latex will depend on the degree of grafting, it is important to quantify and to characterize the grafted PVA. In this work, the quantitative separation and characterization of the grafted water-insoluble PVA was carried out by a two-step selective solubilization of the PVAc latex, first with acetonitrile to separate PVAc homopolymer, followed by water to separate the water-soluble PVA from the remaining acetonitrile-insoluble material. After the separation, the water-soluble and water-insoluble PVA were characterized by Fourier Transform Infrared (FTIR) spectroscopy and 1H and 13C nuclear magnetic resonance (NMR) analyses, from which the details of the PVA-graft-PVAc structure were obtained. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The photoradical polymerization of vinyl acetate was performed using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator in the presence of bis(alkylphenyl)iodonium hexafluorophosphate (BAI). The MTEMPO/BAI system using 2,2’-azobis(isobutyronitrile) or 2,2’-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator did not succeed in controlling the molecular weight and produced polymers that showed a bimodal gel permeation chromatography with the broad molecular weight distribution. On the other hand, the polymerization using 1-(cyano-1-methylethoxy)-4-methoxy-2,2,6,6-tetramethylpiperidine and BAI proceeded by the living mechanism based on linear increases in the first order time–conversion and conversion–molecular weight plots. The molecular weight distribution also increased with the increasing conversion due to cloudiness of the solution as the polymerization proceeded. It was found that the polymerization had a photolatency because the propagation stopped by interruption of the irradiation and was restarted by further irradiation.  相似文献   

17.
Vinyl acetate radical emulsion polymerization in water with GF51 silane co-monomer was performed by semi continuous way. The GF51 impacts on dispersion rheology as well on films and bonding strength properties were determined. It should be stated that even low quantities of GF51 (up to 6% from VAc) determined high viscosity of dispersions. The GF51 modified films have low water absorption and high affinity to glass. Molecular mass and thermal properties of GF51 modified polymers were determined accordingly.  相似文献   

18.
对用(NH4)2S2O8-环己酮NaHSO2加合物新型氧化还原体系引发的醋酸乙烯酯聚合过程进行研究,求得该聚合反应的表观活化能为84.6kJ/mol,并测定了聚合产物的粘均分子量.  相似文献   

19.
The seeded polymerizations of vinyl acetate, using monodisperse poly(vinyl acetate) latex particles prepared in the absence of emulsifiers with potassium persulfate, have been investigated at 70°C with potassium persulfate as an initiator. New small particles were formed in the system containing a small amount of seed particles, but were not observed in the system containing a large amount of seed particles. The size of the secondary particles increased, and their number decreased, with an increase in the seed particle number. The minimum diameter of PVAc particles, which are stabilized by the sulfate ion groups bound at the end of polymer chains during polymerization, was determined to be 0.12 μm diameter from the limiting total surface area of seed particles which prevented further secondary nucleation. The minimum diameter of the particles increased as the speed of the stirrer increased. The new small particle number calculated using this value agreed well with that formed in the seeded polymerization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号