首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of solute-solvent interactions on the vibrational energy relaxation dynamics of perylene and substituted perylenes in the first singlet excited-state upon excitation with moderate (<0.4 eV) excess energy has been investigated by monitoring the early narrowing of their fluorescence spectrum. This narrowing was found to occur on timescales ranging from a few hundreds of femtoseconds to a few picoseconds. Other processes, such as a partial decay of the fluorescence anisotropy and the damping of a low-frequency oscillation due to the propagation of a vibrational wavepacket, were found to take place on a very similar time scale. No significant relationship between the strength of nonspecific solute-solvent interactions and the vibrational energy relaxation dynamics of the solutes could be evidenced. On the other hand, in alcohols the spectral narrowing is faster with a solute having H-bonding sites, indicating that this specific interaction tends to favor vibrational energy relaxation. No relationship between the dynamics of spectral narrowing and macroscopic solvent properties, such as the thermal diffusivity, could be found. On the other hand, a correlation between this narrowing dynamics and the number of low-frequency modes of the solvent molecules was evidenced. All these observations cannot be discussed with a model where vibrational energy relaxation occurs via two consecutive and dynamically well-separated steps, namely ultrafast intramolecular vibrational redistribution followed by slower vibrational cooling. On the contrary, the results indicate that both intra- and intermolecular vibrational energy redistribution processes are closely entangled and occur, at least partially, on similar timescales.  相似文献   

2.
When femto-second (fs) time-resolved experiments are used to study ultrafast processes, quantum beat phenomena are often observed. In this paper, to analyze the fs time-resolved spectra, we will present the density matrix method, a powerful theoretical technique, which describes the dynamics of population and coherence of the system. How to employ it to study the pump-probe experiments and fs ultrafast processes is described. The ππ*→nπ* transition of pyrazine is used as an example to demonstrate the application of the density matrix method. Recently, Suzuki’s group have employed the 22 fs time resolution laser to study the dynamics of the ππ* state of pyrazine. In this case, conical intersection is commonly believed to play an important role in this non-adiabatic process. How to treat the effect of conical intersection on non-adiabatic processes and fs time-resolved spectra is presented. Another important ultrafast process, vibrational relaxation, which takes place in sub-ps and ps range and has never been carefully studied, is treated in this paper. The vibrational relaxation in water dimer is chosen to demonstrate the calculation. It should be noted that the vibrational relaxation of (H2O)2 has not been experimentally studied but it can be accomplished by the pump-probe experiments.  相似文献   

3.
Time-resolved fluorescence spectra of naphthalene in the S(1) state have been measured in various gases below 10(2) kPa. The band shape of the fluorescence changed in an earlier time region after the photoexcitation when an excess energy (3300 cm(-1)) above the 0-0 transition energy was given. The excitation energy dependence of the fluorescence band shape of an isolated naphthalene molecule was measured separately, and the time dependence of the fluorescence band shape in gases was found to be due to the vibrational energy relaxation in the S(1) state. We have succeeded in determining the transient excess vibrational energy by comparing the time-resolved fluorescence band shape with the excitation energy dependence of the fluorescence band shape. The excess vibrational energy decayed almost exponentially. From the slope of the decay rate against the buffer gas pressure, we have determined the collisional decay rate of the excess vibrational energy in various gases. The dependence of the vibrational energy relaxation rate on the buffer gas species was similar to the case of azulene. The comparisons with the results in the low temperature argon and the energy relaxation rate in the S(0) state in nitrogen were also discussed.  相似文献   

4.
Aiming for better understanding of the large complexity of excited-state processes in carotenoids, we have studied the excitation wavelength dependence of the relaxation dynamics in the carotenoid zeaxanthin. Excitation into the lowest vibrational band of the S2 state at 485 nm, into the 0-3 vibrational band of the S2 state at 400 nm, and into the 2B(u)+ state at 266 nm resulted in different relaxation patterns. While excitation at 485 nm produces the known four-state scheme (S2 --> hot S1 --> S1 --> S0), excess energy excitation led to additional dynamics occurring with a time constant of 2.8 ps (400 nm excitation) and 4.9 ps (266 nm excitation), respectively. This process is ascribed to a conformational relaxation of conformers generated by the excess energy excitation. The zeaxanthin S state was observed regardless of the excitation wavelength, but its population increased after 400 and 266 nm excitation, suggesting that conformers generated by the excess energy excitation are important for directing the population toward the S state. The S2-S1 internal conversion time was shortened from 135 to 70 fs when going from 485 to 400 nm excitation, as a result of competition between the S2-S1 internal conversion from the vibrationally hot S2 state and S2 vibrational relaxation. The S1 lifetime of zeaxanthin was within experimental error the same for all excitation wavelengths, yielding approximately 9 ps. No long-lived species have been observed after excitation by femtosecond pulses regardless of the excitation wavelength, but excitation by nanosecond pulses at 266 nm generated both zeaxanthin triplet state and cation radical.  相似文献   

5.
We report the energy relaxation of the OH stretch vibration of HDO molecules contained in an HDO:D(2)O water bridge using femtosecond mid-infrared pump-probe spectroscopy. We found that the vibrational lifetime is shorter (~630 ± 50 fs) than for HDO molecules in bulk HDO:D(2)O (~740 ± 40 fs). In contrast, the thermalization dynamics following the vibrational relaxation are much slower (~1.5 ± 0.4 ps) than in bulk HDO:D(2)O (~250 ± 90 fs). These differences in energy relaxation dynamics strongly indicate that the water bridge and bulk water differ on a molecular scale.  相似文献   

6.
In this and the following paper, we describe the ultrafast structural fluctuations and rearrangements of the hydrogen bonding network of water using two-dimensional (2D) infrared spectroscopy. 2D IR spectra covering all the relevant time scales of molecular dynamics of the hydrogen bonding network of water were studied for the OH stretching absorption of HOD in D2O. Time-dependent evolution of the 2D IR line shape serves as a spectroscopic observable that tracks how different hydrogen bonding environments interconvert while changes in spectral intensity result from vibrational relaxation and molecular reorientation of the OH dipole. For waiting times up to the vibrational lifetime of 700 fs, changes in the 2D line shape reflect the spectral evolution of OH oscillators induced by hydrogen bond dynamics. These dynamics, characterized through a set of 2D line shape analysis metrics, show a rapid 60 fs decay, an underdamped oscillation on a 130 fs time scale induced by hydrogen bond stretching, and a long time decay constant of 1.4 ps. 2D surfaces for waiting times larger than 700 fs are dominated by the effects of vibrational relaxation and the thermalization of this excess energy by the solvent bath. Our modeling based on fluctuations with Gaussian statistics is able to reproduce the changes in dispersed pump-probe and 2D IR spectra induced by these relaxation processes, but misses the asymmetry resulting from frequency-dependent spectral diffusion. The dynamical origin of this asymmetry is discussed in the companion paper.  相似文献   

7.
Ultrafast infrared transient absorption spectroscopy is used to study the photoinduced bimolecular electron transfer reaction between perylene in the first singlet excited state and 1,4-dicyanobenzene in acetonitrile and dichloromethane. Following vibrational marker modes on both donor and acceptor sides in real time provides direct insight into the structural dynamics during the reaction. A band narrowing on a time scale of a few tens of picoseconds observed on the antisymmetric CN stretching vibration of the dicyanobenzene radical anion indicates that a substantial part of the excess energy is channeled into vibrational modes of the product, despite the fact that the reaction is weakly exergonic. An additional narrowing of the same band on a time scale of several hundreds of picoseconds observed in acetonitrile only is interpreted as a signature of the dissociation of the geminate ion pairs into free ions.  相似文献   

8.
We have developed the technique of femtosecond stimulated Raman spectroscopy (FSRS), which allows the rapid collection of high-resolution vibrational spectra on the femtosecond time scale. FSRS combines a sub-50 fs actinic pump pulse with a two-pulse stimulated Raman probe to obtain vibrational spectra whose frequency resolution limits are uncoupled from the time resolution. This allows the acquisition of spectra with <100 fs time resolution and <30 cm(-1) frequency resolution. Additionally, FSRS is unaffected by background fluorescence, provides rapid (100 ms) acquisition times, and exhibits traditional spontaneous Raman line shapes. FSRS is used here to study the relaxation dynamics of beta-carotene. Following optical excitation to S(2) (1B(u) (+)) the molecule relaxes in 160 fs to S(1) (2A(g) (-)) and then undergoes two distinct stages of intramolecular vibrational energy redistribution (IVR) with 200 and 450 fs time constants. These processes are attributed to rapid (200 fs) distribution of the internal conversion energy from the S(1) C=C modes into a restricted bath of anharmonically coupled modes followed by complete IVR in 450 fs. FSRS is a valuable new technique for studying the vibrational structure of chemical reaction intermediates and transition states.  相似文献   

9.
Fifth-order nonlinear visible-infrared spectroscopy is used to probe coherent and incoherent vibrational energy relaxation dynamics of highly excited vibrational modes indirectly populated via ultrafast photoinduced back-electron transfer in a trinuclear cyano-bridged mixed-valence complex. The flow of excess energy deposited into four C≡N stretching (ν(CN)) modes of the molecule is monitored by performing an IR pump-probe experiment as a function of the photochemical reaction (τ(vis)). Our results provide experimental evidence that the nuclear motions of the molecule are both coherently and incoherently coupled to the electronic charge transfer process. We observe that intramolecular vibrational relaxation dynamics among the highly excited ν(CN) modes change significantly en route to equilibrium. The experiment also measures a 7 cm(-1) shift in the frequency of a ~57 cm(-1) oscillation reflecting a modulation of the coupling between the probed high-frequency ν(CN) modes for τ(vis) < 500 fs.  相似文献   

10.
The dynamics of an excess electron in size-selected methanol clusters is studied via pump-probe spectroscopy with resolution of approximately 120 fs. Following excitation, the excess electron undergoes internal conversion back to the ground state with lifetimes of 260-175 fs in (CH3OH)n- (n=145-535) and 280-230 fs in (CD3OD)n- (n=210-390), decreasing with increasing cluster size. The clusters then undergo vibrational relaxation on the ground state on a time scale of 760+/-250 fs. The excited state lifetimes for (CH3OH)n- clusters extrapolate to a value of 157+/-25 fs in the limit of infinite cluster size.  相似文献   

11.
Population transfer between vibrational eigenstates is important for many phenomena in chemistry. In solution, this transfer is induced by fluctuations in molecular conformation as well as in the surrounding solvent. We develop a joint electrostatic density functional theory map that allows us to connect the mixing of and thereby the relaxation between the amide I and amide II modes of the peptide building block N-methyl acetamide. This map enables us to extract a fluctuating vibrational Hamiltonian from molecular dynamics trajectories. The linear absorption spectrum, population transfer, and two-dimensional infrared spectra are then obtained from this Hamiltonian by numerical integration of the Schrodinger equation. We show that the amide I/amide II cross peaks in two-dimensional infrared spectra in principle allow one to follow the vibrational population transfer between these two modes. Our simulations of N-methyl acetamide in heavy water predict an efficient relaxation between the two modes with a time scale of 790 fs. This accounts for most of the relaxation of the amide I band in peptides, which has been observed to take place on a time scale of 450 fs in N-methyl acetamide. We therefore conclude that in polypeptides, energy transfer to the amide II mode offers the main relaxation channel for the amide I vibration.  相似文献   

12.
用微扰密度矩阵和瞬态线性极化率理论,模拟了四特丁基酞菁(BuPc)和四苯基卟啉(TPP)分子的飞秒荧光亏蚀谱.初步定量地确定了它们的Huang-Rhys因子.振动弛豫和电子激发态溶剂化的速率常数.飞秒荧光亏蚀谱在零延时附近的尖峰.归结为S2→S1的内转换所造成的后果.通过对光谱的模拟,比较可靠地确定了内转换速率常数。  相似文献   

13.
The relaxation dynamics of a zinc protoporphyrin (ZnPP) in THF, KPi buffer, and encapsulated within apomyoglobin (apoMb) was investigated in its excited state using femtosecond fluorescence up-conversion spectroscopy with S2 excitation (lambda(ex) = 430 nm). The S2 --> S1 internal conversion of ZnPP is ultrafast (tau < 100 fs), and the hot S1 ZnPP species are produced promptly after excitation. The relaxation dynamics of ZnPP in THF solution showed a dominant offset component (tau = 2.0 ns), but it disappeared completely when ZnPP formed aggregates in KPi buffer solution. When ZnPP was reconstituted into the heme pocket of apoMb to form a complex in KPi buffer solution, the fluorescence transients exhibited a biphasic decay feature with the signal approaching an asymptotic offset: at lambda(em) = 600 nm, the rapid component decayed in 710 fs and the slow one in 27 ps; at lambda(em) = 680 nm, the two time constants were 950 fs and 40 ps. We conclude that (1) the fast-decay component pertains to an efficient transfer of energy from the hot S1 ZnPP species to apoMb through a dative bond between zinc and proximal histidine of the protein; (2) the slow-decay component arises from the water-induced vibrational relaxation of the hot S1 ZnPP species; and (3) the offset component is due to S1 --> T1 intersystem crossing of the surviving cold S1 ZnPP species. The transfer of energy through bonds might lead the dative bond to break, which explains our observation of the degradation of ZnPP-Mb samples in UV-vis and CD spectra upon protracted excitation.  相似文献   

14.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

15.
Phospholipids self-assembled into reverse micelles in benzene are introduced as a new model system to study elementary processes relevant for energy transport in hydrated biological membranes. Femtosecond vibrational spectroscopy gives insight into the dynamics of the antisymmetric phosphate stretching vibration ν(AS)(PO(2))(-), a sensitive probe of local phosphate-water interactions and energy transport. The decay of the ν(AS)(PO(2))(-) mode with a 300-fs lifetime transfers excess energy to a subgroup of phospholipid low-frequency modes, followed by redistribution among phospholipid vibrations within a few picoseconds. The latter relaxation is accelerated by adding a confined water pool, an efficient heat sink in which the excess energy induces weakening or breaking of water-water and water-phospholipid hydrogen bonds. In parallel to vibrational relaxation, resonant energy transfer between ν(AS)(PO(2))(-) oscillators delocalizes the initial excitation.  相似文献   

16.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

17.
The femtosecond time evolutions of excited states in zinc phthalocyanine (ZnPC) films and at the interface with TiO2(110) have been studied by using time-resolved two-photon photoelectron spectroscopy (TR-2PPE). The excited states are prepared in the first singlet excited state (S1) with excess vibrational energy. Two different films are examined: ultrathin (monolayer) and thick films of approximately 30 A in thickness. The decay behavior depends on the thickness of the film. In the case of the thick film, TR-2PPE spectra are dominated by the signals from ZnPC in the film. The excited states decay with tau = 118 fs mainly by intramolecular vibrational relaxation. After the excited states cascaded down to near the bottom of the S1 manifold, they decay slowly (tau = 56 ps) although the states are located at above the conduction band minimum of the bulk TiO2. The exciton migration in the thick film is the rate-determining step for the electron transfer from the film to the bulk TiO2. In the case of the ultrathin film, the contribution of electron transfer is more evident. The excited states decay faster than those in the thick film, because the electron transfer competes with the intramolecular relaxation processes. The electronic coupling with empty bands in the conduction band of TiO2 plays an important role in the electron transfer. The lower limit of the electron-transfer rate was estimated to be 1/296 fs(-1). After the excited states relax to the states whose energy is below the conduction band minimum of TiO2, they decay much more slowly because the electron-transfer channel is not available for these states.  相似文献   

18.
We report the measurements and microscopic theoretical analysis of resonance fluorescence and Raman lineshapes of tetradesmethyl-β-carotene in isopentane at 190 and 230 K. We find the solvent correlation time to be 125 fs at 190 K, 111 fs at 230 K and the vibrational relaxation time to be 253 fs at both temperatures. The dependence of the Raman yield on the solvation dynamics and the detuning is predicted.  相似文献   

19.
The relaxation of O-H bending of water molecule H2O in the liquid phase was studied with the molecular dynamics simulation approach. Both rigid and fexible solvents were used to identify the di?erent channels for the vibrational energy relaxation. It was observed that the relaxation time for the O-H bend overtone is 174 fs in the rigid solvent while it is 115 fs in the fexible solvent. The main pathway of the O-H bend overtone is transition to the bend fundamental. The relaxation time of the O-H bend fundamental was calculated as 204 fs which is comparable to the experimental value 170 fs.  相似文献   

20.
An optical Kerr shuttered spectrograph has been used to time resolve the spontaneous fluorescence of aromatic mixed crystal systems at low temperature with moderate resolution. Transient effects on the fluorescence of anthracene in naphthalene excited with 614 cm?1 vibrational excess energy in 1B2u have been observed that may signal measurable vibrational relaxation pathways. A model consistent with these observations is presented: it implicates a strong interaction between the intramolecular Franck—Condon and non-Franck—Condon modes in the relaxation process for specific excitation in the region of large excess lattice energy. Examination of the fluorescence for several aromatic systems integrated over the interval 0 to 30 ps following excitation high in the S1 vibrational manifold failed to reveal evidence of non-Boltzmann vibrational distributions, although other largely unexplained effects have been observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号