首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
The perturbative effective potential for the Standard Model develops a barrier, at temperatures around the electroweak scale, which separates the minimum at zero field and a deeper non-zero minimum. This could create out of equilibrium conditions by inducing the localization of the Higgs field in a metastable state around zero. In this picture vacuum decay would occur through bubble nucleation. I show that there is an upper bound on the Higgs mass for the above scenario to be realized. The barrier must be high enough to prevent thermal fluctuations of the Higgs expectation value from establishing thermal equilibrium between the two minima. The upper bound is estimated to be lower than the experimental lower limit. This also imposes constraints on extensions of the Standard Model constructed in order to generate a strongly first order phase transition.  相似文献   

7.
8.
9.
《Nuclear Physics B》1996,474(2):421-445
The finite temperature phase transition in the SU(2) Higgs model at a Higgs boson mass MH ≅ 34 GeV is studied in numerical simulations on four-dimensional lattices with time-like extensions up to Lt = 5. The effects of the finite volume and finite lattice spacing on masses and couplings are studied in detail. The errors due to uncertainties in the critical hopping parameter are estimated. The thermodynamics of the electroweak plasma near the phase transition is investigated by determining the relation between energy density and pressure.  相似文献   

10.
JM Cline 《Pramana》2000,55(1-2):33-42
I review recent progress on the electroweak phase transition and baryogenesis, focusing on the minimal supersymmetric Standard Model as the source of new physics.  相似文献   

11.
12.
13.
14.
15.
The present baryon asymmetry of the universe has finally been determined at the finite temperature electroweak phase transition. The strength of this transition plays a crucial role. The effective action is presented to higher orders, including wave function correction factors and the fullg 4, λ2 effective potential. An upper bound for the Higgs massm H~70 GeV is concluded for the reliability of the perturbative approach. The finite temperature electroweak, phase transition is studied on the lattice and the most important results of Monte-Carlo simulations are collected.  相似文献   

16.
《Nuclear Physics B》1995,433(2):467-497
We discuss the critical bubbles of the electroweak phase transition using an effective high-temperature 3-dimensional action for the Higgs field ϕ. The separate integration of gauge and Goldstone boson degrees of freedom is conveniently described in the 't Hooft-Feynman covariant background gauge. The effective dimensionless gauge coupling g3 (T) z in the broken phase is well behaved throughout the phase transition. However, the behavior of the one-loop Z(ϕ) factors of the Higgs and gauge kinetic terms signalizes the breakdown of the derivative expansion and of the perturbative expansion for a range of small ϕ values increasing with the Higgs mass mH Taking a functional Sz [ϕ] with constant Z(ϕ) = z instead of the full non-local effective action in some neighborhood of the saddle point we are calculating the critical bubbles for several temperatures. The fluctuation determinant is calculated to high accuracy using a variant of the heat kernel method. It gives a strong suppression of the transition rate compared to previous estimates.  相似文献   

17.
《Nuclear Physics B》1995,441(3):629-657
We investigate an effective model for the finite-temperature symmetry-restoration phase transition of the electroweak theory. It is obtained by dimensional reduction of the (3 + 1)-dimensional full theory and by subsequent integration over all static gauge degrees of freedom. The resulting theory corresponds to a 3-dimensional O(4) ferromagnet containing cubic and quartic terms of the field in its potential function. Possible nonperturbative effects of a magnetic screening mass are parametrically included in the potential. We analyse the theory using mean-field and numerical Monte Carlo (MC) simulation methods. At the value of the physical Higgs mass, mH = 37 GeV, considered in the present investigation, we find a discontinuous symmetry-restoring phase transition. We determine the critical temperature, order parameter jump, interface tension and latent heat characteristics of the transition. The Monte Carlo results indicate a somewhat weaker first-order phase transition as compared to the mean-field treatment, demonstrating that non-perturbative fluctuations of the Higgs field are relevant. This effect is especially important for the interface tension. Any observation of hard first-order transition could result only from non-perturbative effects related to the gauge degrees of freedom.  相似文献   

18.
19.
20.
D. Bailin  A. Love 《Nuclear Physics B》1983,226(2):493-503
The effective potential for electroweak theory at finite density and temperature is studied with the inclusion of radiative corrections. Supercooling and reheating at the phase transition to the ordered phase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号