首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
考虑磁性颗粒受到的各种内力与外力包括重力、布朗力、van der、Waaks力、磁偶极-偶极作用力以及外磁场作用力,建立了描述磁流体结构的两相格子-Boltzmann三维模型,对外加梯度磁场条件下磁流体的介观结构进行了模拟.模拟结果表明:外加梯度磁场时磁流体粒子沿梯度方向聚集并出现分层现象,且随时间推移和外加磁场增大,分层现象越来越明显.  相似文献   

2.
A method is presented to position and displace micron-sized particles of a diameter between 10 and 100 microm without contact to solid instruments. An ultrasound field is utilized for this purpose. It is excited in a fluid-filled gap between a harmonically vibrating body and a rigid plane surface of an arbitrary other body, e.g., an object slide or a wafer. In this ultrasound field a force field is established, which acts on the particles suspended in the fluid and moves them to certain positions. The advantage of the method is that it is possible to manipulate single particles or many particles in parallel on any surface, for example, on a structured wafer. Theoretical calculations of the force field and experimental results including three principles to displace particles with micrometer accuracy are shown. The method might be used for microassembly or cell manipulation and treatment.  相似文献   

3.
《Ultrasonics》2005,43(1):21-25
In this paper we investigate the motion of small particles suspended in a fluid through which an ultrasound field is propagating. The application of the lattice Boltzmann model to this problem is considered using a two dimensional model. Particles in an ultrasound field are observed to move with a mean particle motion. Further, the time-averaged force on a fixed cylinder is computed and found to be in good agreement with a theoretical expression for the radiation force. Simulations are performed with a single particle, although the approach can equally be applied for a larger number of particles.  相似文献   

4.
In this paper we investigate the motion of small particles suspended in a fluid through which an ultrasound field is propagating. The application of the lattice Boltzmann model to this problem is considered using a two dimensional model. Particles in an ultrasound field are observed to move with a mean particle motion. Further, the time-averaged force on a fixed cylinder is computed and found to be in good agreement with a theoretical expression for the radiation force. Simulations are performed with a single particle, although the approach can equally be applied for a larger number of particles.  相似文献   

5.
A series of devices have been investigated which use acoustic radiation forces to concentrate micron sized particles. These multi-layered resonators use a quarter-wavelength resonance in order to position an acoustic pressure node close to the top surface of a fluid layer such that particles migrate towards this surface. As flow-through devices, it is then possible to collect a concentrate of particulates by drawing off the particle stream and separating it from the clarified fluid and so can operate continuously as opposed to batch processes such as centrifugation. The methods of construction are described which include a micro-fabricated, wet-etched device and a modular device fabricated using a micro-mill. These use silicon and macor, a machinable glass ceramic, as a carrier layer between the transducer and fluid channel, respectively. Simulations using an acoustic impedance transfer model are used to determine the influence of various design parameters on the acoustic energy density within the fluid layer and the nodal position. Concentration tests have shown up to 4.4-, 6.0- and 3.2-fold increases in concentration for 9, 3 and 1 microm diameter polystyrene particles, respectively. The effect of voltage and fluid flow rates on concentration performance is investigated and helps demonstrate the various factors which determine the increase in concentration possible.  相似文献   

6.
Ultrasonic manipulation, which uses acoustic radiation forces, is a contactless manipulation technique. It allows the simultaneous handling of single or numerous particles (e.g., copolymer beads, biological cells) suspended in a fluid, without the need for prior localization. Here it is reported on a method for two-dimensional arraying based on the superposition of two in-plane orthogonally oriented standing pressure waves. A device has been built and the experimental results have been compared with a qualitative analytical model. A single piezoelectric transducer is used to excite the structure to vibration, which consists of a square chamber etched in silicon sealed with a glass plate. A set of orthogonally aligned electrodes have been defined on one surface of the piezoelectric. This allows either a quasi-one-dimensional standing pressure field to be excited in one of two directions or if both electrodes are activated simultaneously a two-dimensional pressure field to be generated. Two different operational modes are presented: two signals identical in amplitude and frequency were used to trap particles in oval shaped clumps; two signals with slightly different frequencies to trap particles in circular clumps. The transition between the two operational modes is also investigated.  相似文献   

7.
We are investigating means of handling microparticles in microfluidic systems, in particular localized acoustic trapping of microparticles in a flow-through device. Standing ultrasonic waves were generated across a microfluidic channel by ultrasonic microtransducers integrated in one of the channel walls. Particles in a fluid passing a transducer were drawn to pressure minima in the acoustic field, thereby being trapped and confined at the lateral position of the transducer. The spatial distribution of trapped particles was evaluated and compared with calculated acoustic intensity distributions. The particle trapping was found to be strongly affected by near field pressure variations due to diffraction effects associated with the finite sized transducer element. Since laterally confining radiation forces are proportional to gradients in the acoustic energy density, these near field pressure variations may be used to get strong trapping forces, thus increasing the lateral trapping efficiency of the device. In the experiments, particles were successfully trapped in linear fluid flow rates up to 1mm/s. It is anticipated that acoustic trapping using integrated transducers can be exploited in miniaturised total chemical analysis systems (microTAS), where e.g. microbeads with immobilised antibodies can be trapped in arrays and subjected to minute amounts of sample followed by a reaction, detected using fluorescence.  相似文献   

8.
Daniel Lhuillier 《Physica A》2011,390(7):1221-1233
Thermodiffusion of particles suspended in a pure liquid is a thorny problem which has not yet received a solution admitted by all the different communities interested in. We approach the subject with macroscopic tools exclusively, hydrodynamics and irreversible thermodynamics. These tools have proved their relevance for molecular mixtures and the Soret effect, and we here extend them to suspensions of particles with supra-molecular size. In particular, we obtain the momentum balance of the particulate phase from which are deduced all the physical phenomena inducing a migration of the particles relative to the carrier fluid. Focussing on thermodiffusion, we show that the osmotic pressure is irrelevant and that thermodiffusion cannot have but two distinct origins : the temperature dependence of the stress associated with the distorted particle microstructure and a fluid-particle interaction force involving the temperature gradient. For deformable particles, it is well known that the origin of the fluid-particle temperature gradient force is the temperature dependence of the surface tension. For rigid particles, we suggest it stems from the temperature dependence of the small density jump, the carrier liquid displays close to the particle’s surface.  相似文献   

9.
磁流体粘度的实验研究   总被引:1,自引:0,他引:1  
采用毛细法粘度计测量了水基Fe磁流体的粘度,分析了磁性粒子份额、表面活性剂含量以及外加磁场强度和方向对粘度的影响。实验结果表明,磁流体粘度随着磁性粒子和表面活性剂浓度的增加而增加;随着外加磁场强度的增大而增大,对于相同的磁流体,在外加磁场方向垂直于流动方向时的粘度大于外加磁场方向平行于流动方向时的粘度;表面活性剂含量的增大将减弱外加磁场对磁流体粘度的影响。  相似文献   

10.
磁流体中Helmholtz和Kelvin力的界定   总被引:3,自引:0,他引:3       下载免费PDF全文
刘桂雄  蒲尧萍  徐晨 《物理学报》2008,57(4):2500-2503
磁流体磁彻体力的两种简化形式Helmholtz力和Kelvin力具有一定的适用范围.在推导磁流体中的磁彻体力表达式基础上,分析Helmholtz力和Kelvin力在磁流体中的起源,得出两种形式的成立条件.计算结果表明:当磁流体磁导率与外磁场强度无关时,磁流体磁彻体力可由Helmholtz力表示;当磁流体中磁性颗粒的平均磁矩与磁流体比体积无关时,Kelvin力为磁彻体力的简化形式;在磁流体磁化系数与其密度成正比情况下,Helmholtz力可转换为Kelvin力. 关键词: 磁流体 磁彻体力 Helmholtz力 Kelvin力  相似文献   

11.
Oberti S  Neild A  Möller D  Dual J 《Ultrasonics》2008,48(6-7):529-536
The use of acoustic radiation forces for the manipulation and positioning of micrometer sized particles has shown to be a promising approach. Resonant excitation of a system containing a particle laden fluid filled cavity, can (depending on the mode excited) result in positioning of the particles in parallel lines (1-D) or distinct clumps in a grid formation (2-D) due to the high amplitude standing pressure fields that arise in the fluid. In a broader context, the alignment of particles using acoustic forces can be used to assist manipulation processes which utilise an external mechanical tool, for instance a microgripper. In such a system, particles can be removed sequentially from a line formed by acoustic forces within a microfluidic channel, hence allowing a degree of automation. In order to fully automate the gripping process, the particles must be confined to a repeatable and accurate location in two dimensions (assuming that in the third dimension they sit on the lower surface of the channel). Only in this way it is possible to remove subsequent particles by simply bringing the gripper to a known location and activating its fingers. This combined use of acoustic forces and mechanical gripping requires that one extremity of the channel is open. However, the presence of the liquid-air interface which occurs at this opening, causes the standing pressure field to decay to zero towards the opening. In a volume of liquid in proximity to the interface positioning of particles by acoustic forces is therefore no longer possible. In addition, the longitudinal gradient of the field can cause a drift of particles towards the longitudinal center of the channel at some frequencies, undesirably moving them further away from the interface, and so further from the gripper. As a solution the use of microfluidic flow induced drag forces in addition to the acoustic force potential has been investigated.  相似文献   

12.
Particles suspended in a fluid will experience forces from stationary acoustic fields. The magnitude of the force depends on the time-averaged energy density of the field and the material properties of the particles and fluid. Forces acting on known particles smaller than 20 microm were studied. Within a 500 kHz acoustic beam generated by a plane-piston circular source, observations were made of the geometry of the particle column that is formed. Varying the acoustic energy altered the column width in a manner predicted by equations for the primary acoustic radiation force from scattering of particles in the long-wavelength limit. The minimum pressures required to trap gas, solid, and liquid particles in a water medium at room temperature were also estimated to within 12%. These results highlight the ability of stationary acoustic fields from a plane-piston radiator to impose nano-Newton-scale forces onto fluid particles with properties similar to biological cells, and suggest that it is possible to accurately quantify these forces.  相似文献   

13.
Modelling of particle paths passing through an ultrasonic standing wave   总被引:3,自引:0,他引:3  
Townsend RJ  Hill M  Harris NR  White NM 《Ultrasonics》2004,42(1-9):319-324
Within an ultrasonic standing wave particles experience acoustic radiation forces causing agglomeration at the nodal planes of the wave. The technique can be used to agglomerate, suspend, or manipulate particles within a flow. To control agglomeration rate it is important to balance forces on the particles and, in the case where a fluid/particle mix flows across the applied acoustic field, it is also necessary to optimise fluid flow rate. To investigate the acoustic and fluid forces in such a system a particle model has been developed, extending an earlier model used to characterise the 1-dimensional field in a layered resonator. In order to simulate fluid drag forces, CFD software has been used to determine the velocity profile of the fluid/particle mix passing through the acoustic device. The profile is then incorporated into a MATLAB model. Based on particle force components, a numerical approach has been used to determine particle paths. Using particle coordinates, both particle concentration across the fluid channel and concentration through multiple outlets are calculated. Such an approach has been used to analyse the operation of a microfluidic flow-through separator, which uses a half wavelength standing wave across the main channel of the device. This causes particles to converge near the axial plane of the channel, delivering high and low particle concentrated flow through two outlets, respectively. By extending the model to analyse particle separation over a frequency range, it is possible to identify the resonant frequencies of the device and associated separation performance. This approach will also be used to improve the geometric design of the microengineered fluid channels, where the particle model can determine the limiting fluid flow rate for separation to occur, the value of which is then applied to a CFD model of the device geometry.  相似文献   

14.
The design, calibration, and use of a noninvasive, noncontact device for stimulating hair cell hair bundles in vitro are described. This device employed a piezoelectric crystal, driven at high frequencies, to generate sinusoidal pressure in a contained fluid volume. The pressure was propagated to the tip of a glass micropipette and the oscillating water jet stimulus produced at the tip was used to stimulate sensory hair bundles. The movements of glass microbeads, caught in the oscillating pressure field of the water jet, provided a means of calibrating this stimulus. The linearity of the jet, its waveform and frequency response, the influence of pipette shape and tip diameter, as well as models to explain the operation of the water jet, are described. The use of this stimulus for measuring hair bundle micromechanics at high frequencies is then demonstrated.  相似文献   

15.
Huan Liang 《中国物理 B》2022,31(10):104702-104702
Thermophoresis and diffusiophoresis respectively refer to the directed drift of suspended particles in solutions with external thermal and chemical gradients, which have been widely used in the manipulation of mesoscopic particles. We here study a phoretic-like motion of a passive colloidal particle immersed in inhomogeneous active baths, where the thermal and chemical gradients are replaced separately by activity and concentration gradients of the active particles. By performing simulations, we show that the passive colloidal particle experiences phoretic-like forces that originate from its interactions with the inhomogeneous active fluid, and thus drifts along the gradient field, leading to an accumulation. The results are similar to the traditional phoretic effects occurring in passive colloidal suspensions, implying that the concepts of thermophoresis and diffusiophoresis could be generalized into active baths.  相似文献   

16.
一种新型光滑粒子动力学固壁边界施加模型   总被引:4,自引:0,他引:4       下载免费PDF全文
刘虎  强洪夫  陈福振  韩亚伟  范树佳 《物理学报》2015,64(9):94701-094701
由于Lagrange粒子法的本质, 固壁边界条件的施加一直是光滑粒子动力学方法的难点之一. 本文从固壁边界的物理原理出发, 应用多层虚粒子表征固壁边界, 提出了一种新型固壁边界施加模型. 将虚粒子看作流体的扩展, 计算中虚粒子密度保持不变, 压力、速度等参数通过对流体粒子的插值获得, 虚粒子有条件的参与控制方程的计算, 对流体的密度/压力产生影响, 通过压力梯度隐式地表征壁面与流体之间的作用强度并对流体粒子施加沿壁面法线方向的斥力作用, 防止流体粒子对壁面的穿透. 数值算例测试结果表明, 与现有固壁边界施加方法相比, 本文方法更加符合流体与固壁边界作用的物理原理, 可以简单、有效地施加固壁边界条件, 方便地应用于具有复杂几何边界的问题, 获得稳定的流场形态、规则的粒子秩序及良好的速度、压力等参量的分布.  相似文献   

17.
We show how holographic optical trapping can be used for the multipoint measurement of fluid flow in microscopic geometries. An array of microprobes can be simultaneously trapped and used to map out the fluid flow in a microfluidic device. The optical traps are alternately turned on and off such that the probe particles are displaced by the flow of the surrounding fluid and then retrapped. The particles' displacements are monitored by digital video microscopy and directly converted into velocity field values. This technique enables the measurement of a two-dimensional flow field at points arbitrarily distributed in a three-dimensional volume. The validity of the technique is demonstrated for the case of the flow around a spinning sphere and the flow at the outlet of a microchannel.  相似文献   

18.
Ferrofluids are widely used in pharmaceutical industries as magnetic separation tools, anti-cancer drug carriers and micro-valve applications. The purpose of the current study is to investigate the effect of a magnetic field on the volume concentration of magnetic nanoparticles of a non-Newtonian biofluid (blood) as a drug carrier. The effect of particles on the flow field is considered. The governing non-linear differential equations, concentration and Naviar-stokes are coupled with the magnetic field. To solve these equations, a finite volume based code is developed and utilized. The results show accumulation of magnetic nanoparticles near the magnetic source until it looks like a solid object. The accumulation of nanoparticles is due to the magnetic force that overcomes the fluid drag force. As the magnetic strength and size of the magnetic particles increase, the accumulation of nanoparticles increases, as well. The magnetic susceptibility of particles also affects the flow field and the contour of the concentration considerably.  相似文献   

19.
A fully integrated micromagnetic particle diverter and microfluidic system are described. Particles are diverted via an external uniform magnetic field perturbed at the microscale by underlying current straps. The resulting magnetic force deflects particles across a flow stream into one of the two channels at a Y-shaped junction. The basic theoretical framework, design, and operational demonstration of the device are presented.  相似文献   

20.
The magnetic body force in boiling two-phase temperature-sensitive magnetic fluid (TSMF) flow is known to effectively increase the driving force of magnetic fluid in a non-uniform magnetic field. Based on this mechanism, in the present study, a binary TSMF, which is a mixture of the TSMF and a low-boiling-saturation-temperature organic solution, is proposed to be used in a heat transport device to enhance its circulation. In order to see its performance in the heat transport device, the pressure difference at different heated temperatures, magnetic fields and inclination angles of the heating section are investigated experimentally and theoretically. Results showed that the driving force increases remarkably due to more gas phase appearing in the test fluid and the magnetization of it decreasing. At low magnetic field the driving force is enhanced greatly when the inclination angle is close to 60°, while at high magnetic field the driving force is remarkably enhanced due to the effect of the magnetic force in the inclination angle range from 0° to 30° and 60° to 90°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号