首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmission and reflection coefficients of two-dimensional semi-infinite solid-solid phononic crystal systems and fluid-fluid phononic waveguide structures have been investigated. The numerical results show that the transmission spectra for longitudinally and transversally polarized incident waves are different, and the spectra of the transmission and reflection coefficients of the semi-infinite system agree well with the band structure. The numerical results show that when a guided wave incident, localized modes are excited, and different polarities have different coupling efficiencies with the incident guided wave. At the same time, far from the cutoff frequency, the guided wave couples out of semi-infinite waveguide highly efficiently.  相似文献   

2.
We study the propagation of thickness-twist (TT) waves in a crystal plate of AT-cut quartz with periodically varying, piecewise constant thickness. The scalar differential equation by Tiersten and Smythe is employed. The problem is found to be mathematically equivalent to the motion of an electron in a periodic potential field governed by Schrodinger’s equation. An analytical solution is obtained. Numerical results show that the eigenvalue (frequency) spectrum of the waves has a band structure with allowed and forbidden bands. Therefore, for TT waves, plates with periodically varying thickness can be considered as phononic crystals. The effects of various parameters on the frequency spectrum are examined.  相似文献   

3.
A generalized theory of elasticity, taking into account the rotational degrees of freedom of point bodies constituting a continuum, was proposed at the beginning of the twentieth century by the Cosserat brothers. We report the experimental observation of coupled rotational-translational modes in a noncohesive granular phononic crystal. While absent in the classical theory of elasticity, these elastic wave modes are predicted by the Cosserat theory. However the Cosserat theory fails to predict correctly the dispersion of the elastic modes in granular crystals even in the long-wavelength limit.  相似文献   

4.
Combined with the supercell technique, the plane wave expansion method is used to calculate the band structures of the two-dimensional solid–solid phononic crystals with the random disorders in either radius or location of the scatterers. Phononic systems with plumbum scatterers embedded in an epoxy matrix are calculated in detail. The influences of the disorder degree on the band structures for both anti-plane and in-plane wave modes are investigated. It is found that, with increase of the disorder degree, the band gaps become narrower with more flat bands appearing in the gaps. Both displacement distribution and response spectra show that at the flat bands, elastic waves are localised due to the presence of the disorder. Wave localisation is more pronounced at the flat bands near the lower/upper edge for the radius/location disorder. Wave propagation and localisation in a randomly disordered system with a point defect is also studied. The influence of the disorder on the point-defect state is discussed. The results show that the disorder can tune the frequencies of the defect states. It is particularly noticed that the double degenerate mode appearing within the gap of the mixed in-plane waves is split up into two separated ones when the random disorder is introduced into the system. Generally, the influence of the disorder is more pronounced for the mixed in-plane modes than the anti-plane modes. The analysis of this paper is relevant to the assessment of the influences of manufacture errors on wave behaviours in phononic crystals as well as the possible control of wave propagation by intentionally introducing disorders into periodic systems.  相似文献   

5.
The propagation of elastic waves in an arbitrary direction through a hexagonal piezoelectric crystal is investigated. Orientational relations are obtained in analytic form for the effective elastic moduli and the piezoelectric and dielectric constants, and also for the basic parameters of the elastic waves: the phase velocity, electromechanical coefficient, and the divergence between the displacement vector and the energy flux. Expressions are given for the directions in which the electromechanical coefficient takes an extremal value, and the basic parameters are calculated for cadmium sulfide.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 5, pp. 101–105, May, 1977.  相似文献   

6.
Wei Liu  Xianyue Su 《Physics letters. A》2010,374(29):2968-609
In this Letter, we numerically investigate the propagation characteristics of elastic transverse waves emitted by line sources embedded inside two-dimensional (2D) solid phononic crystals (PCs). The results show that collimation and enhancement of elastic transverse waves can be achieved at the band edge frequencies. We find that the collimation effect originates from the flat equifrequency contours (EFCs) at the band edge of appropriately designed 2D solid PCs. It is shown that, in addition to geometric symmetry, appropriate constituent material combination is essential to obtain flat EFCs at the band edge. A highly directional and enhanced elastic transverse wave source with a half power angular width of only 5.6° and an enhancement factor of 530 is realized simply by utilizing a finite-size 2D solid PC structure.  相似文献   

7.
Xiao-Wei Zhou 《Ultrasonics》2010,50(6):577-582
The effective velocity of elastic waves for two-dimensional (2D) phononic crystals with rectangular lattice in the long-wavelength limit is studied by numerical simulations. It is demonstrated that, for all three propagating modes, not only the modes polarized in-plane (L wave and SV wave), but also the mode polarized out-plane (SH wave), the effective velocities are distinctly anisotropic and the slowness curves exhibit twofold symmetry. The anisotropy increases as the filling fraction increases or as the width to length ratio of the lattice decreases, and high anisotropy can be obtained in phononic crystals with large contrast between material parameters, which is much higher in rectangular lattice than in square lattice with the same material parameters. Owing to these dependences, the effective velocity can be controlled in engineering.  相似文献   

8.
Ying Liu  Jia-yu Su 《Physics letters. A》2008,372(45):6784-6789
The phononic band structures of two-dimensional metal porous phononic crystals consisting of different lattices (the lattice structures transformed from square to triangle), and pores of various shapes (circle, square, and triangle) and sizes are studied numerically by using Finite Difference Time Domain (FDTD) scheme. It is found that for x-y mode waves, the absolute phononic band gaps (PBGs) rely more on the pore shapes. For triangular pores, the PBG is opening in the whole process of the lattice transformation, and for circular ones, the PBG is closed after a certain lattice structure. No PBG forms in the crystals with square pores. The PBG can be varied by adjusting the size of the pores. But a critical porosity exists for the opening of the PBG.  相似文献   

9.
Ultrasound tunneling through 3D phononic crystals   总被引:1,自引:0,他引:1  
We report the study of ultrasound tunneling in 3D phononic crystals, consisting of fcc arrays of close-packed tungsten carbide beads in water. The transmission coefficient, phase velocity, and group velocity were measured along the [111] direction, allowing us to systematically investigate the tunneling of ultrasound at frequencies in the lowest band gap. Our experimental data are interpreted using multiple scattering theory, which provides a good explanation of our results. The effect of absorption and the difference between the tunneling of classical waves and quantum waves are discussed.  相似文献   

10.
The spatial distribution of material phases within a periodic composite can be engineered to produce band gaps in its frequency spectrum. Applications for such composite materials include vibration and sound isolation. Previous research focused on utilizing topology optimization techniques to design two-dimensional (2D) periodic materials with a maximized band gap around a particular frequency or between two particular dispersion branches. While sizable band gaps can be realized, the possibility remains that the frequency bandwidth of the load that is to be isolated might exceed the size of the band gap. In this paper, genetic algorithms are used to design squared bi-material unit cells with a maximized sum of band-gap widths, with or without normalization relative to the central frequency of each band gap, over a prescribed total frequency range of interest. The optimized unit cells therefore exhibit broadband frequency isolation characteristics. The effects of the ratios of contrasting material properties are also studied. The designed cells are subsequently used, with varying levels of material damping, to form a finite vibration isolation structure, which is subjected to broadband loading conditions. Excellent isolation properties of the synthesized material are demonstrated for this structure.  相似文献   

11.
利用一维固-固结构矩形声子晶体中弹性波横向受限的条件,推导出弹性波在其中各个模式满足的关系式,利用它研究了弹性波各模式的特性。并用转移矩阵研究了弹性波的传输特性随模式量子数和边长的变化规律。得出了一些不同于一维固-固结构非受限声子晶体的新特征,即一维矩形声子晶体的禁带由模式量子数确定,禁带的频率中心和频率宽度与模式量子数和边长有关。  相似文献   

12.
The spatial distribution of material phases within a periodic composite can be engineered to produce band gaps in its frequency spectrum. Applications for such composite materials include vibration and sound isolation. Previous research focused on utilizing topology optimization techniques to design two-dimensional (2D) periodic materials with a maximized band gap around a particular frequency or between two particular dispersion branches. While sizable band gaps can be realized, the possibility remains that the frequency bandwidth of the load that is to be isolated might exceed the size of the band gap. In this paper, genetic algorithms are used to design squared bi-material unit cells with a maximized sum of band-gap widths, with or without normalization relative to the central frequency of each band gap, over a prescribed total frequency range of interest. The optimized unit cells therefore exhibit broadband frequency isolation characteristics. The effects of the ratios of contrasting material properties are also studied. The designed cells are subsequently used, with varying levels of material damping, to form a finite vibration isolation structure, which is subjected to broadband loading conditions. Excellent isolation properties of the synthesized material are demonstrated for this structure.  相似文献   

13.
14.
层状半空间中导波的传播   总被引:13,自引:1,他引:12  
张碧星  鲁来玉 《声学学报》2002,27(4):295-304
研究了在弹性层状半空间中传播的导波的频散及激发机制,分别在含有两层和三层介质情况下,详细分析了对称点源激发的所有可能存在的导波模式的传播特性以及它们与介质参数的相互关系,研究了表面波和能陷波的激发与传播机理。对于速度递增的介质,可存在多个模式,但对于速度递减的介质模型,至多只存在一个导波模式。在含有低速夹层情况下,存在沿低速层传播的能陷模式。能陷波和表面波的传播特性不仅与介质参数有关,而且还与声源频率有关。  相似文献   

15.
A wavelet-based method was developed to compute elastic band gaps of one-dimensional phononic crystals. The wave field was expanded in the wavelet basis and an equivalent eigenvalue problem was derived in a matrix form involving the adaptive computation of integrals of the wavelets. The method was then applied to a binary system. For comparison, the elastic band gaps of the same one-dimensional phononic crystals computed with the wavelet method and the well-known plane wave expansion (PWE) method are both presented in this paper. The numerical results of the two methods are in good agreement while the computation costs of the wavelet method are much lower than that of PWE method. In addition, the adaptability of wavelets makes the method possible for efficient band gap computation of more complex phononic structures. Supported by the National Natural Science Foundation of China (Grant No. 10632020)  相似文献   

16.
The characteristic features and applications of linear and nonlinear guided elastic waves propagating along surfaces (2D) and wedges (1D) are discussed. Laser-based excitation, detection, or contact-free analysis of these guided waves with pump–probe methods are reviewed. Determination of material parameters by broadband surface acoustic waves (SAWs) and other applications in nondestructive evaluation (NDE) are considered. The realization of nonlinear SAWs in the form of solitary waves and as shock waves, used for the determination of the fracture strength, is described. The unique properties of dispersion-free wedge waves (WWs) propagating along homogeneous wedges and of dispersive wedge waves observed in the presence of wedge modifications such as tip truncation or coatings are outlined. Theoretical and experimental results on nonlinear wedge waves in isotropic and anisotropic solids are presented.  相似文献   

17.
声波在一维声子晶体中共振隧穿的研究   总被引:22,自引:0,他引:22       下载免费PDF全文
通过从实验和理论方面对声波在一维声子晶体单晶体和被小的共振腔分开的双晶体中传播时发生的隧穿和共振隧穿现象的研究,观察到了声子晶体单晶体在带隙频率范围内发生的隧穿现象,而对于双晶体样品,在带隙频率范围内出现了很强的共振透射峰.共振发生时,实验测得的群时间很大,但是没有共振时,群速度却很快. 关键词: 声波 声子晶体 隧穿 共振  相似文献   

18.
The scattering of a scalar wave propagating in a waveguide containing weak penetrable scatterers is inspected in the Born approximation. The scatterers are of arbitrary shape and present a contrast both in density and in wavespeed (or bulk modulus), a situation that can be translated in the context of SH waves, water waves, or transverse electric/transverse magnetic polarized electromagnetic waves. For small size inclusions compared to the waveguide height, analytical expressions of the transmission and reflection coefficients are derived, and compared to results of direct numerical simulations. The cases of periodically and randomly distributed inclusions are considered in more detail, and compared with unbounded propagation through inclusions. Comparisons with previous results valid in the low frequency regime are proposed.  相似文献   

19.
The absorption-induced acoustic-axis splitting in a viscoelastic crystal with an arbitrary anisotropy is considered. It is shown that after “switching on” absorption, the linear vector polarization field in the vicinity of the initial degeneracy point having an orientation singularity with the Poincaré index n = ±1/2, transforms to a planar distribution of ellipses with two singularities n = ±1/4 corresponding to new axes. The local geometry of the slowness surface of elastic waves is studied in the vicinity of new degeneracy points and a self-intersection line connecting them. The absorption-induced transformation of the classical picture of conical refraction is studied. The ellipticity of waves at the edge of the self-intersection wedge in a narrow interval of propagation directions drastically changes from circular at the wedge ends to linear in the middle of the wedge. For the wave normal directed to an arbitrary point of this wedge, during movement of the displacement vector over the corresponding polarization ellipse, the wave ray velocity s runs over the same cone describing refraction in a crystal without absorption. In this case, the end of the vector moves along a universal ellipse whose plane is orthogonal to the acoustic axis for zero absorption. The areal velocity of this movement differs from the angular velocity of the displacement vector on the polarization ellipse only by a constant factor, being delayed by π/2 in phase. When the wave normal is localized at the edge of the wedge in its central region, the movement of vector s along the universal ellipse becomes drastically nonuniform and the refraction transforms from conical to wedge-like.  相似文献   

20.
We extend the layer multiple-scattering theory (LMST) to elastic waves propagating in two-dimensional (2D) periodical composites. The formalism to calculate the reflection and transmission coefficients for elastic waves through finite slabs is presented. In this spirit, the crystal is viewed as a sequence of identical monolayer which has one-dimensional (1D) periodicity along a given direction. The reflection and transmission coefficients for a multilayer slab can be obtained by a double-layer scheme through the calculation of the scattering matrix of a monolayer. To demonstrate the application of this formalism, we calculate transmission coefficients for systems consisting of pure solid components or mixing (solid and fluid) components. The validity of this method is checked by both band structure calculations and transmission measurement of ultrasonic experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号