首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
室温下对苯二甲酸二丙炔醇酯分别与Co2CO8Mo2Cp2CO4和RuCo2CO11反应得到三个有机金属化合物C6H4pCO2CH2C2Hμ2Co2CO621、C6H4pCO2CH2C2H2RuCo2CO922和HC2CH2OCOC6H4pCO2CH2C2HμMo2Cp2CO43。研究发现三种金属核对端炔氢的屏蔽作用依次为RuCo2CO9>Co2CO6>Mo2CO4Cp2。化合物1的晶体衍射发现属三斜晶系空间群a=8.1392b=8.8083c=11.3433β=96.2606°V=773.443Z=1Dc=1.748g·cm-3R=0.0513wR=0.1266。  相似文献   

2.
在无水乙醇中, 使低水合氯化稀土 (RE = Ho, Er, Tm, Yb, Lu) 与吡咯烷二硫代氨基甲酸铵 (APDC)和1,10-菲咯啉 (o–phen•H2O) 反应, 制得其三元固态配合物. 用化学分析和元素分析确定它的组成为RE(C5H8NS2)3(C12H8N2) (RE = Ho, Er, Tm, Yb, Lu). IR光谱说明RE3+ 分别与3个PDC的6个硫原子双齿配位, 同时与o–phen的2个氮原子双齿配位, 配位数为8. 用精密转动弹热量计测定了它们的恒容燃烧热△cU分别为(-16788.46 ± 7.74), (-15434.53 ± 8.28), (-15287.80 ± 7.31), (-15200.50 ± 7.22)和(-15254.34 ± 6.61) kJ•mol-1; 并计算了它们的标准摩尔燃烧焓△cHmθ和标准摩尔生成焓△fHmθ分别为( -16803.95 ± 7.74), (-15450.02 ± 8.28), (-15303.29 ± 9.28), (-15215.99 ± 7.22), (-15269.83 ± 6.61) kJ • mol-1和 (-1115.42 ± 8.94), (-2477.80 ± 9.15), (-2619.95 ± 10.44), (-2670.17 ± 8.22), (-2650.06 ± 8.49) kJ•mol-1.  相似文献   

3.
袁福根  王海燕  张勇 《中国化学》2005,23(4):409-412
Reaction of anhydrous YbC13 with 2 equiv, of sodium 2,4,6-tri-tert-butylphenoxide (ArONa, Ar=C6H2-t-Bu3-2,4,6) and 2 equiv, of potassium diphenyl amide in THF afforded the first bis(aryloxo) amido-lanthanide complex of (ArO)2Yb(NPh2)2K(THF)4 (1). In 1, the ytterbium and potassium were bridged via diphenyl amido ligands.The ytterbium metal center was coordinated to two oxygen atoms of aryloxide ligands and two nitrogen atoms of diphenyl amido ligands in a conventional distorted tetrahedral fashion, while the potassium interacted in η^2-fashion with two phenyl rings of the diphenyl amido ligands besides four THF molecules. 1 displayed moderate catalytic activities for the polymerization of methyl methacrylate and acrylonitrile.  相似文献   

4.
A Cu(Ⅰ) complex with mix ligands [Cu(HIm)2(PPh3)2](BF4) was synthesized and characterized by elemental analysis, IRspectroscopy and X-ray diffraction crystallography. The crystal belongs to monoclinic system and P21/c space group, with cell parameters, a=1.2836(3)nm, b=1.5089(3)nm, c=2.0661(4)nm, α=90°, β=101.464(4)°,γ=90°, V=3.9219(13)nm3, Z=4 and Dc=1.374mg·m-3. The Cu(Ⅰ) is coordinated by two Patoms from triphenylphosphine and two Natoms from imidazole to form the distorted tetrahedral geometry.  相似文献   

5.
袁福根  刘秀娟  张勇 《中国化学》2005,23(6):749-752
Reaction of divalent (Ph2N)2Sm(THF)4 with 1 equiv, of azobenzene in THF and then crystallization of the product in DME-Et2O mixed solvent produced the complex of [(PhEN)(DME)Sm]E(μ-η^2:η^2-N2Ph2)2 (1) in 65.0% yield. In complex 1, azobenzene molecules were reduced to be dianionic Ph2N2^2- ligands, bridging two samarium ions in two η^2:η^2 fashions. One samarium ion was bonded to a DME molecule and a diphenyl amido ligand besides two Ph2N2^2- ligands. The unusual Ln-η^2-arene close interaction was found for the first time for diphenyl amido lanthanides. Complex 1 could catalyze the polymerization of methyl methacrylate and acrylonitrile  相似文献   

6.
采用密度泛函理论方法 M06-2X结合6-31+G(d,p)基组研究了CF3CH2CF2CH3与Cl原子反应的反应机理.计算获得了CF3CH2CF2CH3的两种可区分的稳定几何构象RC1和RC2以及与它们相对应的8条氢提取反应通道和2条取代反应通道.运用改进的正则变分过渡态理论(ICVT)并结合小曲率隧道效应校正(SCT),在M06-2X/6-31+G(d,p)水平上计算了各氢提取通道的速率常数,并由Boltzmann配分函数得到总包反应的速率常数kT(cm3.molecule-1.s-1).计算结果表明,体系的总反应速率常数与已有实验值相吻合,进而给出了该反应在200~1000 K温度区间内反应速率常数kT的三参数表达式kT=1.88×10-22T3.76.exp(-1780.69/T),并讨论了两种构象RC1和RC2对总反应的贡献及各构象中氢提取发生在—CH3或—CH2—基团上的位置选择性.此外,由于缺少相关反应物及产物自由基标准生成焓ΔHf,298 K的数据,利用等化学键法估算了在上述物种的标准生成焓.  相似文献   

7.
合成了标题化合物[Mo(C9H6NO)2(O)2](C9H6NO=8-羟基喹啉),测定了化合物的晶体结构.晶体属单斜晶系,空间群Cc,a=13.372(3),b=9.421(2),c=13.554(3)A,β=109.71(3)°,V=1607.6(8)A3.结构由直接法解出,最后可靠性因子R=0.0473,Rw=0.062.Mo原子为6配位,位于八面体的中心.两个配体氧相互处于邻位,分别与8-羟基喹啉中的N原子处于对位.  相似文献   

8.
1 INTRODUCTION During the past decade, a series of organic-inor- ganic hybrid compounds based on metal halide units have been prepared and studied[1]. The combination of organic and inorganic components at the mole- cular level affords us the opportunity to design new hybrid materials and modulate the properties of components[2]. As a result, some interesting proper- ties, such as non-linear optical[3], interesting magne- tic[4], efficient luminescence[2], ideal thermal and mechanical sta…  相似文献   

9.
合成了一个新的双膦配位体2,6-双(二苯基膦乙基)溴苯,通过Pd  相似文献   

10.
钴是生物学上重要的微量元素,它能在一些酶中代替锌,而不改变原来酶的活性犤1犦,钴的光谱和磁性是酶活性部位的有效探针犤2犦。钴催化剂是单活性中心催化剂犤3犦,同时又是很好的乙烯齐聚催化剂犤4,5犦。β-二酮是重要的催化剂原料,徐德民等犤6犦报道了含有β-二酮金属配合物催化剂制备间规聚苯乙烯与聚丙烯共混复合物。宓霞等犤7犦报道了含β-二酮钛非茂催化剂催化降冰片烯聚合。近年来,已报道了一些β-二酮的Co?配合物犤8~10犦的晶体结构,本文报道两个β-二酮的Co?配合物的合成和晶体结构。1实验部分1.1配合…  相似文献   

11.
Pentavalent bis(triorganosiloxy)triphenylantimony derivatives, Ph3Sb(OSiR3)2 (R = Me, Ph), were synthesized by reaction of triphenylantimony with trimethyl- or triphenylsilanol in the presence of tert-butylhydroperoxide by the mild reaction conditions (0-5 °C, 2 h). The reaction of triphenylantimony with diethanolamine in the presence of tert-butylhydroperoxide gave the cyclic compound Ph3Sb(OCH2CH2)2NH. The mixture of Ph3SbO and Ph3Sb(OCH2CH2NMe2)2 was obtained by the reaction of triphenylantimony with 2-(N,N-dimethylamino)ethanol in the presence of tert-butylhydroperoxide.  相似文献   

12.
An electron diffraction analysis of the molecular structures of 1,1,1,3,3,3-hexachloro-1,3-disilapropane and octachloro-1,3-disilapropane has been carried out. Deviations from the staggered conformation are indicated. The data may be approximated by models with C2 symmetry and a small tilt of the SiCl3 groups. The main bond lengths (rg) and bond angles obtained for (SiCl3)2 CH2 are: SiCl, 202.7(4); SiC, 186.6(6); CH, 109.8(24) pm, ClSiCl, 107.9(1); SiCSi, 118.3(7)°; and for (SiCl3)2CCl2: SiCl, 202.0(4); SiC, 190.2(9); CCl, 179.6(9) pm; ClSiCl, 109.5(1); SiCSi, 120.6(9); ClCCl, 110.9(16); SiCCl, 106.3(3)°.  相似文献   

13.
The [PdCl2(NH2(CH2)5CH3)2] complex was tested as catalyst for 1-heptyne semihydrogenation under mild conditions of temperature and pressure in homogeneous and heterogeneous systems. Species were characterized by XPS and FTIR techniques. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
UV irradiation of [Et4N] [V(CO)6] in the presence of the tripod ligands (L) MeC(CH2PPh2)3 (cp3) and P(CH2CH2PPh2)3 (pp3) yields [Et4N] [V(CO)5L], cis-[Et4N] [V(CO)4L] and mer-[Et4N] [V(CO)3L] (where the meridional configuration for L = cp3 is uncertain). Except for [Et4N] [V(CO)5cp3], all these species were isolated. The complexes are characterized by their IR, 31P and 51V NMR spectra.  相似文献   

15.
The enthalpies of reactions 1 and 2 have been measured as ΔH(1) = ?142 ± 6 and ΔH(2) = ?112 ± 6 kJ mol?1 to determine whether thermochemical factors are a major influence in the formation of different reaction products (tcne = tetracyanoethylene).
  相似文献   

16.
Irradiation of CpRu(CO)2CH3 (1) in C6D6 at room temperature yields CpRu(CO)2C6D5 and CH3D (where Cp = n5-C5Me5). CpRu(CO)2CD3 (2) has also been prepared and similar irradiation in C6H6 yields CpRu(CO)2C6H5 (3) and CD3H. This latter reaction confirms that it is the methyl group bonded to ruthenium that is involved in the C-H activation process and not the methyl groups on the Cp ligand system. The compound CpRu(CO)2C6H5 (3) has been prepared for the first time in good yield by the reaction of CpRu(CO)2Br with NaBPh4. X-ray crystal structures of both CpRu(CO)2CH3 (1) and CpRu(CO)2C6H5 (3) have been determined and the results are reported and discussed.  相似文献   

17.
1,2-Eliminations are a varied and extensive set of dissociations of ions in the gas phase. To understand better such dissociations, elimination of CH2=CH2 and CH3CH3 from (CH3)2NH+CH2CH3 (1) and of CH4 from (CH3)2NH2+ are characterized by quantum chemical calculations. Stretching of the CN bond to ethyl is followed by shift of an H from methyl to the bridging position in ethyl and then to N to reach (CH3)2NH2+ + CH2=CH2 from 1. CH3CH3 elimination by H-transfer to C2H5+ to form CH3NH+=CH2 + CH3CH3 also takes place. (CH3)2NH2+ eliminates methane by CN bond extension followed by β-H-transfer to give CH2=NH+ + CH4. Low-energy reactions resembling complex-mediated 1,2-eliminations occur and constitute a hitherto largely unrecognized type of reaction. As in many complex-mediated reactions, these reactions transfer H between incipient fragments. They are distinguished from complex-mediated processes by the fragments not being able to rotate freely relative to each other near the transition state for reaction, as they do in complexes. Most 1,2-eliminations are ion-neutral complex-mediated, occur by the just described lower energy reactions, have 1,1-like transition states, or utilize highly asynchronous 1,2 transition states. All of these avoid synchronized 1,2-transition states that would violate conservation of orbital symmetry.  相似文献   

18.
Syntheses and single-crystal X-ray diffraction studies have been completed on two cycloruthenapentadienyl (CO)6Ru2L2 derivatives, with L = CH2OHC = CCH2OH and C2H5C=CCH2CH2OH respectively. Crystal data are as follows: for [(CO)3RuC4(CH2OH)4]Ru(CO)3·H2O, P21/c, a 13.72(1), b 9.501(4), c 14.86(1) Å, β 101.10(6)°, Rw = 0.052 for 1911 reflections; for [(CO)3RuC4(CH2CH2OH)2(C2H5)2]Ru(CO)3, P21/c, a 9.191(3), b 16.732(4), c 14.903(3) Å, β 113.61(4)°, Rw = 0.042 for 2865 reflections. Both compounds are built up from binuclear units, each unit being regarded as a Ru(CO)3 fragment π-bonded to a cycloruthenapentadienyl ring. The molecular parameters are compared with those of known cyclometallapentadienyl complexes of transition metals. The presence of a semi-bridging CO group is discussed.  相似文献   

19.
The crystal and molecular structure of the complex Th[η5-(CH3)5C5]2[CH2-Si(CH3)3]2, which undergoes facile intramolecular cyclometalation to the thoracyclobutane Th[η5-(CH3)5C5]2(CH2)2Si(CH3)2, is reported. While the Th[η5-(CH3)5C5]2 ligation is unexceptional, the Th[CH2Si(CH3)3]2 fragment is highly unsymmetrical having Th-C (corresponding angle Th-C-Si) 2.51(1) Å (132.0(6)°) and 2.46(1) Å (148.0(7)°). This conformation, which appears to result from severe intramolecular non-bonded contacts, allows a methyl hydrogen atom of one CH2Si(CH3)3 ligand to approach within ca. 2.3 Å of the α-carbon atom of the other CH2Si(CH3)3 ligand.  相似文献   

20.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号