首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the transport properties of La1.8−xEu0.2SrxCuO4 (x = 0.04, 0.08, 0.125, 0.15, 0.2) with a special focus on the Nernst effect in the normal state. Various anomalous features are present in the data. For x = 0.125 and 0.15 a kink-like anomaly is present in the vicinity of the onset of charge stripe order in the LTT phase, suggestive of enhanced positive quasiparticle Nernst response in the stripe ordered phase. At higher temperature, all doping levels except x = 0.2 exhibit a further kink anomaly in the LTO phase which cannot unambiguously be related to stripe order. Moreover, a direct comparison between the Nernst coefficients of stripe ordering La1.8−xEu0.2SrxCuO4 and superconducting La2−xSrxCuO4 at the doping levels x = 0.125 and x = 0.15 reveals only weak differences. Our findings make high demands on any scenario interpreting the Nernst response in hole-doped cuprates.  相似文献   

2.
The thermal expansion of single crystals of the Bi2Sr2−x La x CuO6+δ high-temperature superconducting (HTSC) system in the insulating phase with compositions having no superconducting transition to a temperature of 1.8 K (x ≥ 0.8) is measured in an arbitrary direction in the (ab) plane in the temperature range of 7–50 K. Temperature regions of material compression upon heating are found. The study of anomalies in magnetic fields of 3 and 6 T, parallel and perpendicular to the c-axis revealed an anisotropic and nonmonotonic effect of the field on thermal expansion. Such anomalies for the n-type Nd2−x Ce x CuO4−δ HTSC sample also having no superconducting transition are detected for the first time. The results show that the anomaly nature is caused by anisotropic electronic ordering, probably, by the charge density wave in the CuO2 plane and superconductivity fluctuations in the insulating phase.  相似文献   

3.
Sr1−x La x CuO2 (x=0.10−0.15) thin films with an infinite-layer type structure were grown on BaTiO3 buffered (001) SrTiO3 substrates by pulsed laser deposition (PLD). The evolution of the growth front was monitored, in-situ, by high-pressure reflection high-energy electron diffraction (RHEED), while the surface morphology was analyzed by means of atomic force microscopy (AFM), ex-situ. X-ray diffraction (XRD) was used to determine the evolution of the film structure with deposition and cooling parameters, as well as to study the type and level of epitaxial strain in the Sr1−x La x CuO2 films. The RHEED data showed that the Sr1−x La x CuO2 films grow on BaTiO3/SrTiO3 following a 2D or Stranski-Krastanov mechanism, depending on the La doping level. The transition point (critical thickness d c) from layer-by-layer like (2D) to island (3D) growth depends on the film stoichiometry: decreasing the La doping concentration x from 0.15 to 0.10, the critical thickness d c increases from ∼45 nm to ∼75 nm. In order to induce superconductivity, the Sr1−x La x CuO2 films were cooled down under reduction conditions. The as-deposited films showed semiconducting or metallic behavior, the resistivity decreasing with increasing La concentration. Post-deposition vacuum annealing resulted in a superconducting transition onset (but no zero resistance down to 4.2 K) only for some of the x=0.15 Sr1−x La x CuO2 films.  相似文献   

4.
Abnormal negative thermal expansion of single crystals of high-temperature Bi2Sr2 − x La x CuO6 + · superconductor in the dielectric phase (x ≥ 0.8) was detected at low temperatures. It was established that material shrinkage upon heating occurs at higher temperatures than in superconducting compositions. The anisotropic and nonmonotonous effect of a magnetic field of 3–6 T on the coefficient of thermal expansion was revealed. We attribute these abnormalities to the existence of superstructure charge ordering in the oxygen sublattice.  相似文献   

5.
The positive muon spin relaxation method is applied to probe magnetic ordering in the superconducting phase of a high quality single crystal of La2−xSrxCuO4−σ (0.11≤x≤0.14). The well characterized crystal ofx=0.11 (T c=34.5 K) with nearly complete flux exclusion exhibits spin freezing at 8K(T f) with significant spin fluctuation up to 20 K. The onset of spin fluctuation andT f decrease against increasingx towardsx=0.15, suggesting an existence of a magnetic phase boundary aroundx whereT c becomes maximum.  相似文献   

6.
It is well known that the superconducting transition temperature of high-T c cuprates depends on the number of CuO2 planes in the unit cell. The multilayer structure implies the possibility of interlayer hopping. Under the assumption that the interlayer hopping can be specified by the parameter t (k) = t (cos(k x ) − cos(k y ))2, the quasiparticle excitation spectrum for the bilayer cuprate in the superconducting state has been determined in the framework of the tt′ − t″ − t J* model using the generalized mean-field approximation. It turns out that the interlayer hoppings does not create any additional mechanism of the Cooper paring and does not lead to an increase in T c . The splitting of the upper Hubbard quasiparticle band attributed to the interlayer hoppings is manifested as two peaks in the doping dependence of the superconducting transition temperature at temperatures below the maximum T c value for a single-layer cuprate. It has been found that antiferromagnetic interlayer correlations suppress the interlayer splitting. This probably leads to the common doping dependence of T c for both single-layer and bilayer cuprates.  相似文献   

7.
Direct measurements of the complex conductivity spectra of thin-film La2−2x SrxCuO4 are made at frequencies of 5–40 cm−1. Narrow, intense Drude-type excitation is observed in the superconducting phase. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 5, 406–409 (10 September 1998)  相似文献   

8.
Vortex and pseudogap states in electron-doped Sm2−x Ce x CuO4−δ (x ∼ 0.14) are investigated by the interlayer transport in magnetic fields up to 45 T. To extract intrinsic properties, we fabricated small 30 nm-high mesa structures, sufficiently thin to be free of the recently reported partial decomposition problems. On cooling, the c-axis resistivity ρc of the mesa structures reveals a semiconductive upturn above Tc, followed by a sharp superconducting transition at 20 K. When the magnetic fieldH is applied along the c-axis, ρc(T) shows a parallel shift without significant broadening, as also observed in the hole-doped underdoped cuprates. Above the transition we observe negative magnetoresistance (MR), which can be attributed to the field suppression of the pseudogap, whose magnitude is as small as 38 K. Our results in thex ∼ 0.14 samples closely correspond to the interlayer transport behavior in the ‘overdoped’ regime of hole-doped Bi2Sr2 CaCu2 O8+y.  相似文献   

9.
The structural phase transition from orthorhombic (T) phase to tetragonal (T′) phase in substituted La2−x R x CuO4 (R = Pr, Nd, Sm, Eu and Gd) and T′ to T-phase in Pr2−x M x CuO4−y (M = Sr, Ca) has been studied by X-ray diffraction technique. The T-phase of La2CuO4 is transferred to T′ phase abruptly atx=0.8, 0.4, 0.4, 0.3 and 0.4 respectively for substitution of Pr, Nd, Sm, Eu and Gd for La in La2CuO4 without evidence of the T* phase. The T′ structure of Pr2CuO4 (x = 0.0) gets transformed to the T* structure at 30% Ca doping (x=0.6) and then to the T structure at 50% Ca doping (x=1.0), while for Sr-contentx=0.0, 0.4 and 1.0 it shows T′, T* and T structure respectively.  相似文献   

10.
The longitudinal and transverse relaxation rates of 19F nuclei in Pr2CuO4−x Fx (x=0.20) samples are measured at high temperatures (150 K<T<600 K). A feature is found in the temperature dependence of the relaxation rates at temperature T′≅300 K. The magnetic properties of the electronic superconductor Pr2CuO4−x Fx as a possible system with a stripe ordering of carriers and spins are discussed. Pis’ma Zh. éksp. Teor. Fiz. 65, No. 4, 328–332 (25 February 1997)  相似文献   

11.
High quality electron-doped HTSC single crystals of Pr2−xCexCuO4+δ and Nd2−xCexCuO4+δ have been successfully grown by the container-free traveling solvent floating zone technique. The optimally doped Pr2−xCexCuO4+δ and Nd2−xCexCuO4+δ crystals have transition temperatures T c of 25 K and 23.5 K, respectively, with a transition width of less than 1 K. We found a strong dependence of the optimal growth parameters on the Ce content x. We discuss the optimization of the post-growth annealing treatment of the samples, the doping extension of the superconducting dome for both compounds as well as the role of excess oxygen. The absolute oxygen content of the as-grown crystals is determined from thermogravimetric experiments and is found to be ≥ 4.0. This oxygen surplus is nearly completely removed by a post-growth annealing treatment. The reduction process is reversible as demonstrated by magnetization measurements. In as-grown samples the excess oxygen resides on the apical site O(3). This apical oxygen has nearly no doping effect, but rather influences the evolution of superconductivity by inducing additional disorder in the CuO2 layers. The very high crystal quality of Nd2−xCexCuO4+δ is particularly manifest in magnetic quantum oscillations observed on several samples at different doping levels. They provide a unique opportunity of studying the Fermi surface and its dependence on the carrier concentration in the bulk of the crystals.  相似文献   

12.
We report muon spin relaxation/rotation measurements on sintered powder samples of Nd2−x Ce x CuO4−y and a large single crystal of Nd2CuO4−y . We find an electronic phase diagram which is quite similar to that of hole-doped superconductors such as La2−x Sr x CuO4−y , although the doping of electrons into the system is less efficient in destroying the static moments on the copper spins. Static magnetic order in Nd2CuO4−y appears below about 250 K, and two spin reorientations are seen atT=75 K andT=35 K. Measurements of the magnetic field penetration depth have been unsuccessful due to the rare-earth paramagnetism of these materials.  相似文献   

13.
A nonuniform electron density distribution is observed in La1−x− y NdySrxCuO4 and La1−x−y EuySrxCuO4, and long-lived magnetic fluctuations in these compounds are studied. The dynamics of the magnetic fluctuations depends strongly on the magnetic properties of the rare-earth ions, which stabilize the low-temperature tetragonal phase. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 5, 344–349 (10 March 1998)  相似文献   

14.
The significance of heterovalent, substitutional disorder for the distribution of charge carriers in La2−x Sr x CuO4 has been investigated. Disorder is shown to cause strong variations of binding energies of the ions ranging to some eV for Sr contentsx=0.1. Balancing the energy for a hole transport, Cu3++O2−→Cu2++O, and taking binding energy variations into account, the process is realized to become possible without consuming energy for a subset Θ for allx Cu3+ in one formula unit of La2−x Sr x CuO4. The functions Θ(x) are presented for hole transports to apex and in-plane oxygens, respectively. The delocalization of charge carriers is interpreted to be caused by valency disorder on metal lattice sites.  相似文献   

15.
Anelastic relaxation and 139LaNQR relaxation rates in La2–xSrxCuO4 for Sr content around 2 and 3 percent are discussed in terms of spin and lattice excitations and of the related ordering processes. It is argued how the phase diagram of La2–xSrxCuO4 at the boundary between the antiferromagnetic (AF) and the spin-glass phase (x = 0.02) could be more complicate than previously thought, with a transition to a quasi-long range ordered state at K, as indicated by neutron scattering data. On the other hand, the 139LaNQR spectra are compatible with a transition to an AF phase around K, in agreement with the phase diagram commonly accepted in literature. In this case the peaks in NQR and anelastic relaxation rates around 150 K and 80 K respectively in La1.98Sr0.02CuO4, yield the first evidence of freezing process involving simultaneously lattice and spin excitations, possibly corresponding to motion of charged stripes. Received 18 May 2000 and Received in final form 11 July 2000  相似文献   

16.
The influence of interlayer hoppings on the superconducting transition temperature (T c) in bilayer cuprates has been studied. The parameter of hopping between layers is expressed as t (k) = t (cos(k x ) − cos(k y ))2 and treated as a small perturbation for the states of two CuO2 planes described by the t-t′-t″-J* model. In the generalized mean field approximation for dx2 - y2{d_{{x^2} - {y^2}}} symmetry of the superconducting gap, neither the interlayer hopping or exchange interaction, nor the pair hopping between CuO2 layers provides an additional mechanism of Cooper pair formation or an increase in T c. In the concentration dependence of T c, the bilayer splitting of the upper Hubbard band of quasi-holes is manifested as two peaks with temperatures slightly lower than the maximum T c for a single-layer cuprate. Interlayer antiferromagnetic spin correlations suppress bilayer splitting.  相似文献   

17.
Hybrid herostructures comprising an YBa2Cu3O x (YBCO) high-temperature superconductor (HTS) layer and Nb/Au low-temperature superconductor (LTS) bilayer (with critical HTS and LTS temperatures T c and Tc, respectively), separated by a thin (d M = 5–20 nm) interlayer of LaMnO3, La0.7Ca0.3MnO3, or La0.7Sr0.3MnO3 manganite have been studied. The electric resistance and magnetic properties of individual (evaporated directly onto the substrate) manganite films and related hybrid herostructures have been measured. Based on quasi-classical equations, analytical expressions for the conductivity of herostructures at TTc are obtained in the case of a low-transparency superconductor/manganite interface. It is established that the conductivity of heterostructures is determined by the proximity effect (related to the penetration of a condensate wavefunction from the Nb/Au bilayer to manganite) and depends strongly on interface transparency. At low temperatures (TT c′), the conductivity peaks are found at voltages determined by the exchange field of the manganite interlayer. At T c′ < T < T c, conductivity features at nearly zero bias voltages are observed, which are related to the superconductivity of the YBCO electrode.  相似文献   

18.
The superconducting state of doped semiconductors, in which a superconducting gap opens in the spectrum of one-particle states formed (upon doping) in the region of the initial energy gap, is studied within the framework of the Holstein-Anderson model. The wavefunction of the relative motion of a pair of particles in the bound state is determined. The dependence of the size of this wavefunction on the level of doping in the overdoping region of the phase diagram is consistent with the published experimental data for La2 ? x SrxCuO4. Variation of the temperature in the range of T < T c only influences the natural normalization of the boson wavefunction (normalized to the boson density), while the size of the wavefunction is independent of the temperature. Theoretical values of the condensation energy and the heat capacity jump upon the superconductor-metal transition in the region of optimal doping agree with the experimental data for La2 ? x SrxCuO4.  相似文献   

19.
The electrical conductivity, magnetic susceptibility, magnetization, and submillimeter (v=5∓20 cm−1) permittivity and dynamic conductivity of La1−x Sr x MnO3 (0≤x≤ 0.45) single crystals are investigated. The anomalies in the temperature dependences of these quantities are identified with diverse magnetic and structural phase transformations, including antiferromagnetic and ferromagnetic ordering, structural transitions between strongly distorted (Jahn-Teller) and weakly distorted (pseudocubic) orthorhombic phases, structural transitions to a rhombohedral phase and unusual transitions to a polaron-ordering state. As a result, the complete T-x phase diagram of the system La1−2x Sr x MnO3 is constructed in a wide interval of temperatures T=4.2∓1050 K and concentrations x=0−0.45. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 4, 331–336 (25 August 1998)  相似文献   

20.
Torikai  E.  Nagamine  K.  Kitazawa  H.  Tanaka  I.  Kojima  H. 《Hyperfine Interactions》1993,79(1-4):909-914
The positive muon (+) spin relaxation method under zero external field is applied to probe magnetic ordering in the superconducting phase of a high quality single crystal of La2–x Sr x CuO4 (0.10<x<0.15). A series of well characterized crystals with nearly complete flux exclusion were found to exhibit a magnetic ordering with transition temperature depending onx with a peak atx=0.11. Possible explanations are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号