首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ensemble-based technique has been developed and successfully applied to simultaneously estimate the relative permeability and capillary pressure by history matching the observed production profile. Relative permeability and capillary pressure curves are represented by using a power-law model. Then, forward simulation is performed with the initial coefficients of the power-law model, all of which are to be tuned automatically and finally determined once the observed data is assimilated completely and history matched. The newly developed technique has been validated by a synthetic coreflooding experiment with two scenarios. The endpoints are fixed for the first scenario, whereas they are completely free in the second scenario. Simultaneous estimation of relative permeability and capillary pressure has been found to improve gradually as more observation data is assimilated. There exists an excellent agreement between both the updated relative permeability and capillary pressure and their corresponding reference values, once the discrepancy between the simulated and observed production history has been minimized. Compared with coefficients of capillary pressure curve, coefficients of relative permeability curves, irreducible water saturation and residual oil saturation are found to be more sensitive to the observed data. In addition, water relative permeability is more sensitive to the observation data than either oil relative permeability or capillary pressure. It is shown from its application to a laboratory coreflooding experiment that relative permeability and capillary pressure curves can be simultaneously evaluated once all of the experimental measurements are assimilated and history matched.  相似文献   

2.
Naturally fractured reservoirs contain about 25–30% of the world supply of oil. In these reservoirs, fractures are the dominant flow path. Therefore, a good understanding of transfer parameters such as relative permeability as well as flow regimes occurring in a fracture plays an important role in developing and improving oil production from such complex systems. However, in contrast with gas–liquid flow in a single fracture, the flow of heavy oil and water has received less attention. In this research, a Hele-Shaw apparatus was built to study the flow of water in presence of heavy oil and display different flow patterns under different flow rates and analyze the effect of fracture orientations on relative permeability curves as well as flow regimes. The phase flow rates versus phase saturation results were converted to experimental relative permeability curves. The results of the experiments demonstrate that, depending on fracture and flow orientation, there could be a significant interference between the phases flowing through the fracture. The results also reveal that both phases can flow in both continuous and discontinuous forms. The relative permeability curves show that the oil–water relative permeability not only depends on fluid saturations and flow patterns but also fracture orientation.  相似文献   

3.
Core-scale experiments and analyses would often lead to estimation of saturation functions (relative permeability and capillary pressure). However, despite previous attempts on developing analytical and numerical methods, the estimated flow functions may not be representative of coreflood experiments when it comes to predicting similar experiments due to non-uniqueness issues of inverse problems. In this work, a novel approach was developed for estimation of relative permeability and capillary pressure simultaneously using the results of “multiple” corefloods together, which is called “co-history matching.” To examine this methodology, a synthetic (numerical) model was considered using core properties obtained from pore network model. The outcome was satisfactorily similar to original saturation functions. Also, two real coreflood experiments were performed where water at high and low rates were injected under reservoir conditions (live fluid systems) using a carbonate reservoir core. The results indicated that the profiles of oil recovery and differential pressure (dP) would be significantly affected by injection rate scenarios in non-water wet systems. The outcome of co-history matching could indicate that, one set of relative permeability and capillary pressure curves can reproduce the experimental data for all corefloods.  相似文献   

4.
A look into the literature on the temperature dependency of oil and water relative permeabilities reveals contradictory reports. There are some publications reporting shifts in the water saturation range as well as variations in the relative permeability curves by temperature. On the other hand, some authors have blamed the experimental artifacts, viscous instabilities and fingering issues for these variations. We have performed core flooding experiments to further investigate this issue. Glass bead packs and sand packs were used as the porous media, and Athabasca bitumen with varying viscosities was displaced by hot water at differing temperatures. The unsteady-state method of relative permeability measurement was applied and the experimental data were history matched by a simulator that is tailor made to predict the relative permeabilities. The matches were obtained by varying the relative permeability correlation parameters. The results indicated that the initial water saturation has a direct relation with temperature, while residual oil saturation generally drops at higher temperatures. Although the water saturation range shifts, no direct and unique trend for either oil or water relative permeability is justified. The spread in relative permeabilities especially in the case of higher permeable cores suggests that viscous instabilities are present. As the same saturation shift happens by only changing the oil viscosity, the relative permeability variations with temperature can be attributed to oil to water viscosity ratio changes with temperature. Temperature dependency of relative permeabilities is more related to experimental artifacts, viscous fingering and viscosity changes than fundamental flow properties.  相似文献   

5.
Direct laboratory measurements of in situ water-phase saturation history are used to estimate relative permeability and capillary pressure functions. The magnitude of so-called nonequilibrium effects during spontaneous imbibition is quantified and, if significant, these effects are incorporated within the estimation technique. The primary constraint employed is that curves must increase or decrease monotonically; otherwise, no predetermined functionality is assumed. The technique is demonstrated using water saturation profile histories obtained for diatomite (a low-permeability and high-porosity rock). Results indicate that nonequilibrium effects detected at laboratory scale in low-permeability rocks influence the estimation of unsteady-state relative permeability and capillary pressure.  相似文献   

6.
Comparison of the three-phase oil relative permeability models   总被引:3,自引:0,他引:3  
A comparative study of seven different methods for predicting three-phase oil relative permeabilities in the presence of gas and water phases is presented. Predicted oil relative permeabilities from these correlations have been compared with published three-phase experimental data obtained in Berea sandstone core samples. Some of the correlations under study have been recently developed and have never been tested against the laboratory data.The comparison shows that the commonly used models such as Stones' often do not give accurate predictions of the experimental data. It is concluded that the recently developed models fit the experimental data as well as or better than the previously developed and widely used three-phase oil relative permeability models.  相似文献   

7.
Fractures serve as primary conduits having a great impact on the migration of injected fluid into fractured permeable media. Appropriate transport properties such as relative permeability and capillary pressure are essential for successful simulation and prediction of multi-phase flow in such systems. However, the lack of a thorough understanding of the dynamics governing immiscible displacement in fractured media, limits our ability to properly represent their macroscopic transport properties. Previous experimental observations of imbibition front evolution in fractured rocks are examined in the present study using an automated history-matching approach to obtain representative relative permeability and capillary pressure curves. Predicted imbibition front evolution under different flow conditions resulted in an excellent agreement with experimental observations. Sensitivity analyses, in combination with direct experimental observation, allowed exploring the competing effects of relative permeability and capillary pressure on the development of saturation distribution and imbibing front evolution in fractured porous media. Results show that residual saturations are most sensitive to matrix relative permeability to oil, while the ratio of oil and water relative permeability, rock heterogeneity, boundary condition, and matrix–fracture capillary pressure contrast, affect displacement shape, speed, and geometry of the imbibing front.  相似文献   

8.
A method has been developed for investigating the relative permeabilities of porous media for oil and for aqueous solutions of polymers; experimental equipment has been developed for determining the phase permeabilities by a stationary method. Investigations were made of the influence of polyacrylamide additives on the change in the relative permeabilities for the simultaneous flow of water and a nonpolar hydrocarbon liquid. It was established that addition of the polymer can lead to a simultaneous reduction in the relative permeability for the wetting liquid and an increase for the nonwetting liquid. The phase permeabilities were obtained for oil and water moving behind a fringe of polymer substance. It was established that the phase permeability for the water phase is a function of the saturation and the amount of sorbate. A cycle of experimental investigations was made into the influence of the rate of pumping and the concentration of the dissolved polymer on the change in the relative permeabilities.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 163–167, July–August, 1980.  相似文献   

9.
Relative permeability is a key characteristic describing flow properties of petroleum reservoirs, aquifers and water retention of soils. Various laboratory methods, typically categorised as steady-state, unsteady-state and centrifuge are used to measure relative permeability and may lead to different results. In recent years, 1D MRI, NMR \(T_2\) and \(T_1\) profiling have been applied for the characterisation of rock cores. It has been shown that spatially resolved NMR in conjunction with centrifuge technique may provide high-quality capillary pressure curves. Combining Burdine and Brooks–Corey models enables estimation of relative permeability from capillary pressure curves. This approach assumes a strong relationship between capillary pressure and relative permeability known to be complex. Here we compare a generalised approach of Green, which relies on saturation profiles set by various capillary drainage techniques, to a NMR relaxation approach. Comparisons are performed experimentally and numerically using three sandstone rocks to test the influence of rock morphology. The numerical part includes simulation of a centrifuge capillary drainage by applying morphological drainage transforms on high-resolution 3D tomograms. \(T_1\) responses along the sample are simulated using a random walk technique. The NMR relaxation-based approach is then compared to LBM simulated relative permeability and to experiment. The study confirms the applicability of NMR relaxation methods for relative permeability estimation of water-wet rocks and validates a numerical approach against experiment.  相似文献   

10.
Adding surfactant into the displacing aqueous phase during surfactant-enhanced aquifer remediation of NAPL contamination and in chemical flooding oil recovery significantly changes interfacial tension (IFT) (σ) on water–oil interfaces within porous media. The change in IFT may have a large impact on relative permeability for the two-phase flow system. In most subsurface flow investigations, however, the influence of IFT on relative permeability has been ignored. In this article, we present an experimental study of two-phase relative- permeability behavior in the low and more realistic ranges of IFT for water–oil systems. The experimental work overcomes the limitations of the existing laboratory measurements of relative permeability (which are applicable only for high ranges of IFT (e.g., σ > 10−2 mN/m). In particular, we have (1) developed an improved steady-state method of measuring complete water–oil relative permeability curves; (2) proven that a certain critical range of IFT exists such that IFT has little impact on relative permeability for σ greater than this range, while within the range, relative permeabilities to both water and oil phases will increase with decreasing IFT; and (3) shown that a functional correlation exists between water–oil two-phase relative permeability and IFT. In addition, this work presents such correlation formula between water–oil two-phase relative permeability and IFT. The experimental results and proposed conceptual models will be useful for quantitative studies of surfactant-enhanced aquifer remediation and chemical flooding operations in reservoirs.  相似文献   

11.
Pore-network modelling is commonly used to predict capillary pressure and relative permeability functions for multi-phase flow simulations. These functions strongly depend on the presence of fluid films and layers in pore corners. Recently, van Dijke and Sorbie (J. Coll. Int. Sci. 293:455–463, 2006) obtained the new thermodynamically derived criterion for oil layers existence in the pore corners with non-uniform wettability caused by ageing. This criterion is consistent with the thermodynamically derived capillary entry pressures for other water invasion displacements and it is more restrictive than the previously used geometrical layer collapse criterion. The thermodynamic criterion has been included in a newly developed two-phase flow pore network model, as well as two versions of the geometrical criterion. The network model takes as input networks extracted from pore space reconstruction methods or CT images. Furthermore, a new n-cornered star shape characterization technique has been implemented, based on shape factor and dimensionless hydraulic radius as input parameters. For two unstructured networks, derived from a Berea sandstone sample, oil residuals have been estimated for different wettability scenarios, by varying the contact angles in oil-filled pores after ageing from weakly to strongly oil-wet. Simulation of primary drainage, ageing and water invasion show that the thermodynamical oil layer existence criterion gives more realistic oil residual saturations compared to the geometrical criteria. Additionally, a sensitivity analysis has been carried out of oil residuals with respect to end-point capillary pressures. For strongly oil-wet cases residuals increase strongly with increasing end-point capillary pressures, contrary to intermediate oil-wet cases.  相似文献   

12.
Analytical expressions of relative permeability are derived for an interacting cylindrical tube bundle model. Equations for determining relative permeability curves from both the interacting uniform and interacting serial types of triangular tube bundle models are presented. Model parameters affecting the trend of relative permeability curves are discussed. Interacting triangular tube bundle models are used to history-match laboratory displacement experiments to determine the relative permeability curves of actual core samples. By adjusting model parameters to match the history of oil production and pressure drop, the estimated relative permeability curves provide a connection between the macroscopic flow behavior and the pore-scale characteristics of core samples.  相似文献   

13.
We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil by water containing bacteria and substrate for their feeding. The bacterial products are both bacteria and metabolites. In the context of MEOR modeling, a novel approach is partitioning of metabolites between the oil and the water phases. The partitioning is determined by a distribution coefficient. The transfer part of the metabolite to oil phase is equivalent to its ”disappearance,” so that the total effect from of metabolite in the water phase is reduced. The metabolite produced is surfactant reducing oil–water interfacial tension, which results in oil mobilization. The reduction of interfacial tension is implemented through relative permeability curve modifications primarily by lowering residual oil saturation. The characteristics for the water phase saturation profiles and the oil recovery curves are elucidated. However, the effect from the surfactant is not necessarily restricted to influence only interfacial tension, but it can also be an approach for changing, e.g., wettability. The distribution coefficient determines the time lag, until residual oil mobilization is initialized. It has also been found that the final recovery depends on the distance from the inlet before the surfactant effect takes place. The surfactant effect position is sensitive to changes in maximum growth rate, and injection concentrations of bacteria and substrate, thus determining the final recovery. Different methods for incorporating surfactant-induced reduction of interfacial tension into models are investigated. We have suggested one method, where several parameters can be estimated in order to obtain a better fit with experimental data. For all the methods, the incremental recovery is very similar, only coming from small differences in water phase saturation profiles. Overall, a significant incremental oil recovery can be achieved, when the sensitive parameters in the context of MEOR are carefully dealt with.  相似文献   

14.
Fines release and migration is a universal problem in the production of oil from poorly consolidated sandstone reservoirs. This problem can result in the changes of porosity and permeability. It may not only damage a production facility, but it can also have a profound effect on oil recovery, resulting from the change in heterogeneity of the oil formation. Based on the macroscopic continuous porous media, continuity equations for multiphase flow in oil formations, and the theories of fines release and migration, a three-dimensional (3D) field scale mathematical model describing migration of fines in porous media is developed. The model is solved by a finite-difference method and the line successive over relaxation (LSOR) technique. A numerical simulator is written in Fortran 90 and it can be used to predict (1) the ratio of fines to production liquid volume, (2) the permeability change caused by colloidal and hydrodynamic forces resulting from fines release and migration, and (3) production performance. The numerical results of the one-dimensional model were verified by the data obtained by core displacement experiments. The sensitivity of numerical results with grid block size was studied by coarse grids, moderate grids, and fine grids. In addition, an oil field example with five-spot patterns was made on the numerical simulator. The results show that fines migration in an oil formation can accelerate the development of heterogeneity of the reservoir rock, and has an obvious influence on production performance, i.e., water drive front, water-cut trends, and oil recovery.  相似文献   

15.
Determination of Capillary Pressure Function from Resistivity Data   总被引:1,自引:0,他引:1  
A model has been derived theoretically to correlate capillary pressure and resistivity index based on the fractal scaling theory. The model is simple and predicts a power law relationship between capillary pressure and resistivity index (P c = p e · I β) in a specific range of low water saturation. To verify the model, gas-water capillary pressure and resistivity were measured simultaneously at a room temperature in 14 core samples from two formations in an oil reservoir. The permeability of the core samples ranged from 0.028 to over 3000 md. The porosity ranged from less than 8 to over 30. Capillary pressure curves were measured using a semi-permeable porous-plate technique. The model was tested against the experimental data obtained in this study. The results demonstrated that the model could match the experimental data in a specific range of low water saturation. The experimental results also support the fractal scaling theory in a low water saturation range. The new model developed in this study may be deployed to determine capillary pressure from resistivity data both in laboratories and reservoirs, especially in the case in which permeability is low or it is difficult to measure capillary pressure.  相似文献   

16.
Many resistivity data from laboratory measurements and well logging are available. Papers on the relationship between resistivity and relative permeability have been few. To this end, a new method was developed to infer two-phase relative permeability from the resistivity data in a consolidated porous medium. It was found that the wetting phase relative permeability is inversely proportional to the resistivity index of a porous medium. The proposed model was verified using the experimental data in different rocks (Berea, Boise sandstone, and limestone) at different temperatures up to 300°F. The results demonstrated that the oil and water relative permeabilities calculated from the experimental resistivity data by using the model proposed in this article were close to those calculated from the capillary pressure data in the rock samples with different porosities and permeabilities. The results demonstrated that the proposed approach to calculating two-phase relative permeability from resistivity data works satisfactorily in the cases studied.  相似文献   

17.
变形双重介质广义流动分析   总被引:21,自引:0,他引:21  
对于碳酸盐油藏和低渗油藏的渗流问题,传统的研究方法都是假设地层渗透率是常数,这假设,对于地层渗透率是压力敏感的情况,对压力的空间变化和瞬时变化将导致较大的误差。本文研究了应力敏感地层中双重介质渗流问题的压力不稳定响应,不仅考虑了储层的双重介质特征,而且考虑了应力敏感地层中介质的变形,建立了应力敏感地层双重介质的数学模型,渗透率依赖于孔隙压力变化的流动方程是强非线性的,采用Douglas-Jones预估-校正法获得了只有裂缝发生形变定产量生产时无限大地层的数值解及定产量生产岩块与裂隙同时发生形变时无限大地层的数值解,并探讨了变形参数和双重介质参数变化时压力的变化规律,给出几种情况下典型压力曲线图版,这些结果可用于实际试井分析。  相似文献   

18.
A comparative study of numerical modelling and laboratory experiments of two-phase immiscible displacements in a 33 cm × 10 × 3 cm thick cross-bedded reservoir model is reported. Dynamic two-dimensional fluid saturation development was obtained from experiments by use of a nuclear tracer imaging technique and compared to numerical predictions using a full-field black oil simulator.The laboratory cross-bedded reservoir model was a sandpack consisting of two strongly waterwet sands of different grain sizes, packed in sequential layers. The inlet and outlet sand consisted of low permeable, high capillary, sand while the central crosslayer with a dip angle of 30° was a high permeable, low capillary, sand. Results on moderate contrasts in permeability and capillary heterogeneities in the cross-bedded reservoir model at different mobility ratios and capillary number floods temporarily showed a bypass of oil, resulting in a prolonged two-phase production. The final remaining oil saturations, however, were as for isolated samples. Hence, permanently trapped oil was not observed.Simulations of waterfloods, using a commercial software package, displayed correct water breakthrough at low flow rate and unity viscosity ratio, but failed in predicting local saturation development in detail, probably due to numerical diffusion.The simulator was used to test several cases of heterogeneity contrasts, and influence from different relative permeability curves. Further, by altering the capillary pressure at the outlet, the end effects were proven important.  相似文献   

19.
Using the conventional volumetric method in unsteady-state relative permeability measurements for unconventional gas reservoirs, such as coal and gas shale, is a significant challenge because the movable water volume in coal or shale is too small to be detected. Moreover, the dead volume in the measurement system adds extra inaccuracy to the displaced water determination. In this study, a low-field nuclear magnetic resonance (NMR) spectrometer was introduced into a custom-built relative permeability measurement apparatus, and a new method was developed to accurately quantify the displaced water, avoiding the drawback of the dead volume. The changes of water in the coal matrix and cleats were monitored during the unsteady-state displacement experiments. Relative permeability curves for two Chinese anthracite and bituminous coals were obtained, matching the existing research results from the Chinese coalbed methane area. Moreover, the influences of confining pressure on the shape of the relative permeability curve were evaluated. Although uncertainties and limits exist, the NMR-based method is a practical and applicable method to evaluate the gas/water relative permeability of ultra-low permeability rocks.  相似文献   

20.
Positive velocity dependency of relative permeability of gas–condensate systems, which has been observed in many different core experiments, is now well acknowledged. The above behaviour, which is due to two-phase flow coupling in condensing systems at low interfacial tension (IFT) conditions, was simulated using a 3D pore network model. The steady-dynamic bond network model developed for this purpose was also equipped with a novel anchoring technique, which was based on the equivalent hydraulic length concept adopted from fluid flow through pipes. The available rock data on the co-ordination number, capillary pressure, absolute permeability, porosity and one set of measured relative permeability curves were utilised to anchor the capillary, volumetric and flow characteristics of the constructed network model to those properties of the real core sample. Then the model was used to predict the effective permeability values at other IFT and velocity levels. There is a reasonable quantitative agreement between the predicted and measured relative permeability values affected by the coupling rate effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号