首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amorphous and crystalline Fe-B alloys (5–25 at % B) were studied using pulsed 57Fe nuclear magneticr esonance at 4.2 K. The alloy samples were prepared from a mixture of the 57Fe and 10B isotopes by rapid quenching from the melt. In the microcrystalline Fe-(5–12 at %) B alloys, the resonance frequencies were measured for local states of 57Fe nuclei in the tetragonal and orthorhombic Fe3B phases and also in α-Fe. The resonance frequencies characteristic of 57Fe nuclei in α-Fe crystallites with substitutional impurity boron atoms in the nearest neighborhood were also revealed. In the resonance frequency distribution P(f) in the amorphous Fe-(18–25) at % B alloys, there are frequencies corresponding to local Fe atom states with short-range order of the tetragonal and orthorhombic Fe3B phases. As the boron content decreases below 18 at %, the P(f) distributions are shifted to higher frequencies corresponding to 57Fe NMR for atoms exhibiting a short-range order of the α-Fe type. The local magnetic structure of the amorphous Fe-B alloys is also considered.  相似文献   

2.
Amorphous and quenched crystalline Fe-B alloys in the composition range of 4–25 at % B were prepared by melt spinning and investigated by 57Fe Mössbauer spectroscopy at T = 87 K. The states of iron atoms in the α-Fe phases, including iron atoms having boron atoms in the nearest coordination sphere, and in the orthorhombic (o) and tetragonal (T) Fe2B phases are detected in the microcrystalline alloys. The short-range order and the local atomic structure of the amorphous Fe-B alloys are determined. The amorphous alloys consist of microregions (clusters) with short-range order of the t- and o-Fe2B and α-Fe types. The dependence of the content of various types of clusters on the alloy composition is quantitatively estimated.  相似文献   

3.
The local atomic and magnetic structure of Fe70Cr15B15 X-ray amorphous alloy is studied by means of 11B nuclear magnetic resonance (NMR) and 57Fe Mössbauer spectroscopy. It is determined that Fe85B15 and Fe70Cr15B15 X-ray amorphous alloys consist of microregions (nanocrystals) with short-range orders of t-Fe3B and α-Fe phases. It was found out that chromium atoms in the Fe70Cr15B15 X-ray amorphous alloy are evenly distributed in these two nanocrystals, forming t-(Fe,Cr)3B and α-Fe(Cr) phases.  相似文献   

4.
The bulk metastable Fe83B17 eutectic alloy has been successfully prepared using hypercooling solidification. The bulk alloy consists of αFe and metastable Fe3B phases, without the stable Fe2B phase. Upon isothermal annealing, decomposition of the metastable Fe3B phase (prepared by hypercooling) was investigated, as compared to the corresponding behaviour from amorphous Fe-B alloy. PACS 61.82.Bg; 64.60.-i; 64.60.My; 64.70.Kb; 68.60.Dv  相似文献   

5.
To analyze the origin of the magnetic enhancement of Fe-Ni alloy, the electronicconfigurations and magnetic properties were investigated using density functional theorybased on the first-principle. The supercell (5 × 1 × 1) of Fe,Fe9Ni1 and Fe8Ni2 were constructed. Thedefect formation energy, band structure, density of states and electron density differencewere calculated. The results showed that Ni doping changed the electronic configuration ofFe atoms, resulting in the enhancement of spin polarization of Fe and the larger Bohrmagnetic moment in Fe-Ni alloys (Fe9Ni1). The results showed thatthe charge transfer and the atomic spacing between Fe atoms and the dopant Ni atoms playedan important role in determination of magnetic moment. The value of Fe supercell(5 × 1 × 1), Fe9Ni1 and Fe8Ni2 were 23.14,23.34 and 22.61μ B, respectively.  相似文献   

6.
The atomic dynamics of an Al0.62Cu0.255Fe0.125 icosahedral quasicrystal is investigated using inelastic neutron scattering (the isotopic contrast method). The partial vibrational spectra of copper, iron, and aluminum atoms in the icosahedral quasicrystal and the total spectrum of thermal vibrations of the compound are directly reconstructed from the experimental data for the first time. It is found that the vibrational energies of copper and iron atoms fall in relatively narrow ranges near 16 and 30 meV, respectively, whereas the vibrational energies of aluminum atoms lie in a wide range (up to 60 meV).  相似文献   

7.
The local magnetic and valence states of impurity iron ions in the rhombohedral La0.75Sr0.25Co0.98 57Fe0.02O3 perovskite were studied using Mössbauer spectroscopy in the temperature range 87–293 K. The Mössbauer spectra are described by a single doublet at 215–293 K. The spectra contained a paramagnetic and a ferromagnetic component at 180–212 K and only a broad ferromagnetic sextet at T < 180 K. The results of the studies showed that, over the temperature range 87–295 K, the iron ions are in a single (tetrahedral) state with a valence of +3. In the temperature range 180–212 K, two magnetic states of Fe3+ ions were observed, one of which is in magnetically ordered microregions and the other, in paramagnetic microregions; these states are due to atomic heterogeneity. In the magnetically ordered microregions in the temperature range 87–212 K, the magnetic state of the iron ions is described well by a single state with an average spin S = 1.4 ± 0.2 and a magnetic moment μ(Fe) = 2.6 ± 0.4μ B .  相似文献   

8.
Amorphous and microcrystalline Fe-B alloys (4–25 at % B) obtained by rapid quenching of the melt were studied using the pulsed nuclear magnetic resonance (NMR) of 11B nuclei at 4.2 K. Alloy samples were prepared from both a natural isotope mixture and a mixture of the 56Fe and 11B isotopes. The NMR spectra were measured as a function of the boron content. The maximum hyperfine fields at the 11B nuclei sites are 25–29 kOe and overlap the values of the hyperfine fields at the 11B nuclei sites in the tetragonal and orthorhombic Fe3B phases and also in the α-Fe phase containing boron as a substitutional impurity. The short-range order and local atomic structure of the amorphous Fe-B alloys were determined. The amorphous alloys are found to consist of microregions (clusters) with a short-range order similar to that in the tetragonal or orthorhombic Fe3B phase or the α-Fe phase.  相似文献   

9.
This paper presents the results of investigation on the influence of temperature on magnetoelastic characteristics of the two ring-shaped cores, made of Fe70Ni8Si10B12 amorphous alloy. The cores were annealed for 1 h at 350 and 400°C, respectively. The compressive force F was applied perpendicular to the direction of the magnetizing field H in the sample. Special cylindrical backing enables application of the uniform compressive stress σ to the wound ring sample. A resistive furnace heated the experimental set-up. Results presented in the paper indicate a significant influence of the temperature on the magnetoelastic characteristics of Fe70Ni8Si10B12 amorphous alloy. Information about the magnetoelastic characteristics of this material may be useful in the magnetoelastic sensor development. Also this will create new possibilities in the development of physical model of magnetoelastic effect.   相似文献   

10.
Elemental mixtures of Al, Cu, Fe powders with the nominal composition of Al70Cu20Fe10 were mechanically alloyed in a planetary ball mill for 80 h. Subsequent annealing of the as-milled powders were performed at 600–800°C temperature range for 4 h. Structural characteristics of the mechanically alloyed Al70Cu20Fe10 powders with the milling time and the heat treatment were investigated by X-ray diffraction (XRD), differential scanning calorimeter (DSC) and differential thermal analysis (DTA). Mechanical alloying of the Al70Cu20Fe10 did not result in the formation of icosahedral quasicrystalline phase (i-phase) and a long time milling resulted in the formation of β-Al(Cu,Fe) solid solution phase (β-phase). The i-phase was observed only for short-time milled powders after heat treatment above 600°C. The β-phase was one of the major phases in the Al70Cu20Fe10 alloy. The w-Al7Cu2Fe1 phase (w-phase) was obtained only after heat treatment of the short-time milled and unmilled samples. The present investigation indicated that a suitable technique to obtain a large amount of quasicrystalline powders is to use a combination of short-time milling and subsequent annealing.  相似文献   

11.
Glass-forming ability (GFA) and thermal stability of Fe62Nb8B30, Fe62Nb6Zr2B30 and Fe72Zr8B20 at % amorphous alloys were investigated by calorimetric (DSC and DTA) measurements. The crystallization kinetics was studied by DSC in the mode of continuous versus linear heating and it was found that both the glass transition temperature, T g , and the crystallization peak temperature, T p , display strong dependence on the heating rate. The partial replacement of Nb by Zr leads to lower T g and T x temperatures and causes a decrease of the supercooled liquid region. JMA analysis of isothermal transformation data measured between T g and T x suggests that the crystallization of the Fe62Nb8B30 and Fe62Nb6Zr2B30 amorphous alloys take place by three-dimensional growth with constant nucleation rate. Nb enhances the precipitation of the metastable Fe23B6 phase and stabilizes it up to the third crystallization stage. Zr addition increases the lattice constant of Fe23B6 and, at the same time, decreases the grain size.  相似文献   

12.
The structure of an LiNi0.4Fe0.6O2 cubic solid solution is determined using magnetic measurements and electron diffraction. It is found that this solid solution has a microinhomogeneous structure due to the formation of superparamagnetic clusters. The electron diffraction analysis of LiNi0.4Fe0.6O2 samples has revealed diffuse scattering characteristic of the substitutional short-range order in ordered solid solutions with a B1-type structure. It is shown that the short-range order is associated with the LiNiO2-type rhombohedral superstructure (space group \(R\bar 3m\)), i.e., with the redistribution of lithium and nickel atoms in the (111)B1 alternating planes. The short-range order is observed in regions with a nickel content higher than the mean nickel content corresponding to the macroscopic composition.  相似文献   

13.
The structural properties and parameters of ferromagnetic resonance have been studied for Fe73.5CuNb3Si13.5B9 nanocrystalline alloys produced from the initial amorphous state via annealing under different conditions. The dependence of the linewidth of the ferromagnetic resonance on the grain size ΔHD 6 has been found. The result is discussed within the framework of the random magnetic anisotropy model.  相似文献   

14.
The effect of high pressures up to 70 GPa on single-and polycrystalline samples of yttrium iron garnet Y357Fe5O12 is studied by Mössbauer absorption spectroscopy (for the 57Fe nucleus) in a diamond-anvil cell. It is found that the hyperfine magnetic field Hhf at 57Fe nuclei vanishes abruptly at a pressure of 48 ± 2 GPa, which indicates the transition of the crystal from the ferrimagnetic state to nonmagnetic one. The magnetic transition is irreversible. When the pressure decreases, the magnetic state is not recovered and the garnet remains nonmagnetic until zero pressure. The behavior of the quadrupole splitting and isomer shift shows that, simultaneously with the magnetic transition, irreversible electron and possibly spin transitions occur with changes in the local crystalline structure. The mechanisms of the magnetic collapse are discussed.  相似文献   

15.
The thermodynamics structural relaxation of Fe73Cu1.5Nd3Si13.5B9 amorphous alloy from room temperature to 400°C has been investigated by measuring the structure factor with in situ X-ray diffraction. The structural information of the atomic configuration such as radial distribution function (RDF) and neighbor atomic distance was gained by Fourier transformation. The research result shows that the amorphous structure remains stable in the temperature range of 30 to 400°C but exhibits distinct changes in local atomic configuration with the increase of temperature. The quantitative determination of the neighbor atomic distance suggests that the degree of short-range order changes by the temperature altering the second nearest neighbor local atomic configuration of the amorphous when structural relaxation occurs. Supported by the Natural Science Foundation of Hebei Province of China (Grant No. A2007000296), the National Natural Science Foundation of China (Grant No. 50731005), SKPBRC (Grant Nos. 2007CB616915 and 2006CB605201), and PCSIRT (Grant No. IRT0650)  相似文献   

16.
The kinetics of primary crystallization and the effect of structural parameters of the precipitating nanocrystalline α-phase Fe-Si on changes in microhardness, coercive force, and saturation magnetization in an amorphous Finemet-type 5BDSR alloy (Fe78.5Si13.5B9Nb3Cu1) obtained by melt quenching are studied. It is found that both an increase in bulk density and an increase in the average nanoparticle size contribute to the hardening of the amorphous/nanocrystalline alloy.  相似文献   

17.
The optical properties of Fe78Si10B12 ferromagnetic alloy in amorphous, crystalline, and intermediate structural states have been investigated by ellipsometry in the spectral range of 0.22–18 μm. It is established that alloy crystallization leads to a significant change in the optical constants and the frequency dependences of the dielectric functions calculated based on these optical constants. The structural reconstruction under heat treatment leads to an increase in the intensity and shift of interband absorption bands. The plasma and relaxation frequencies of conduction electrons are determined; their numerical values also depend on the degree of atomic ordering.  相似文献   

18.
57Fe Mössbauer and photoemission measurements were performed on meltquenched amorphous Fe(Zr, B) and (Fe, Ni)B alloys. The atomic and electronic structure of Fe90Zr10 and Fe88B12 glasses were found to be different. Half of the Zr content could be replaced by B in the Fe90Zr10 glass without changing its structure. Mossbauer investigation of the amorphous (Fe1?xNix)100?yBy (0<=x<=0.80, 12<=y<=40) system indicates preferential arrangement of Fe and Ni atoms on the transition metal sites. According to the present XPS measurements there is a remarkable shift of 0.5 eV to higher binding energies of the B ls core level energy in the Ni rich glasses compared to Fe88B12 corresponding to a stronger binding between the Ni and the B atoms than that of Fe and B.  相似文献   

19.
Single-phase polycrystalline La0.75Sr0.25Co0.9857Fe0.02O3 samples have been prepared by solidstate ceramic technology. The samples have the rhombohedral structure (space group \(R\bar 3c\)). The studies of perovskite La0.75Sr0.25Co0.9857Fe0.02O3 by Mössbauer spectroscopy on impurity 57Fe nuclei in the temperature range of 5–293 K have revealed the existence of a superparamagnetic relaxation in the temperature range of 100–210 K. The parameters of hyperfine interactions (hyperfine magnetic fields, line shifts, and quadrupole shifts) and the anisotropy energy have been measured, and the frequencies of magnetic moment relaxation of iron ions have been estimated.  相似文献   

20.
Superimposed asymptotic exponential relaxation between 125 and 200°C of average hyperfine inductions and their orientations were detected by the57Fe Mössbauer spectroscopy in the ferromagnetic Fe40Ni40B20 and Fe70Co10B20 amorphous alloys. From their Arrhenius type temperature dependence, average activation enthalpies ΔH were derived in agreement with the resistometric and coercivity data. The interpretation is proposed in terms of individual irreversible processes: stress relief, free volume shrinking and short-range ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号