首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The impingement and interdiffusion of adsorbed Pb and Bi layers spreading from separated 3D pure bulk sources on Cu(1 0 0) has been studied, at T = 513 K, by in situ scanning Auger microscopy. When the leading edges of the pure Pb and Bi diffusion profiles impinge, they both consist of low-coverage lattice gas surface alloyed phases. In these low-coverage phases, Pb displaces surface alloyed Bi and the point of intersection of the profiles drifts towards the Bi source. These features lead to the conclusion that Pb atoms are more strongly bound at surface alloyed sites in Cu(1 0 0) than Bi atoms. Once the total coverage (Pb + Bi) on the substrate reaches about one monolayer, Pb and Bi are dealloyed from the substrate, and the interdiffusion profiles become essentially symmetric. Pb and Bi mix in all proportions, with an interdiffusion coefficient of ∼10−13 m2/s. This is considerably smaller than the self-diffusion coefficients previously observed for pure Pb and Bi in their respective high-coverage phases, indicating that the mechanism of interdiffusion is different from that of self-diffusion. As interdiffusion proceeds, the point of intersection of the Pb and Bi profiles reverses its drift direction, leading to the conclusion that binding of Bi atoms to the Cu(1 0 0) substrate is stronger than that of Pb atoms in the highest-coverage surface dealloyed layers.  相似文献   

2.
We have studied the growth of Ag on Ge/Si(1 1 1) substrates. The Ge/Si(1 1 1) substrates were prepared by depositing one monolayer (ML) of Ge on Si(1 1 1)-(7 × 7) surfaces. Following Ge deposition the reflection high energy electron diffraction (RHEED) pattern changed to a (1 × 1) pattern. Ge as well as Ag deposition was carried out at 550 °C. Ag deposition on Ge/Si(1 1 1) substrates up to 10 ML has shown a prominent (√3 × √3)-R30° RHEED pattern along with a streak structure from Ag(1 1 1) surface. Scanning electron microscopy (SEM) shows the formation of Ag islands along with a large fraction of open area, which presumably has the Ag-induced (√3 × √3)-R30° structure on the Ge/Si(1 1 1) surface. X-ray diffraction (XRD) experiments show the presence of only (1 1 1) peak of Ag indicating epitaxial growth of Ag on Ge/Si(1 1 1) surfaces. The possibility of growing a strain-tuned (tensile to compressive) Ag(1 1 1) layer on Ge/Si(1 1 1) substrates is discussed.  相似文献   

3.
Infrared reflection absorption (IRA) spectra measured for dimethyl ether (DME) adsorbed at 80 K on Cu(1 1 1) and Ag(1 1 1) give IR bands belonging only to the A1 and B2 species, indicating that the adsorbate takes on an orientation in which the C2 axis bisecting the COC bond angle tilts away from the surface normal within the plane perpendicular to the substrates. The DFT method was applied to simulate the IRA spectra, indicating that the tilt angles of DME on Cu(1 1 1) and Ag(1 1 1) are about 50° and 55°, respectively, at submonolayer coverages. The results are in contrast to the case of DME on Cu(1 1 0) and Ag(1 1 0), where the C2 axis is perpendicular to the substrates [T. Kiyohara et al., J. Phys. Chem. A 106 (2002) 3469]. Methyl ethyl ether (MEE) adsorbed at 80 K on Cu(1 1 1) gives IRA bands mainly ascribable to the gauche (G) form, whereas the IRA spectra measured for MEE on Ag(1 1 1) are characterized by the trans (T) form. The rotational isomers are identical with those on Cu(1 1 0) and Ag(1 1 0); i.e., MEE on Cu(1 1 0) takes the G form and the adsorbate on Ag(1 1 0) the T form [T. Kiyohara et al., J. Phys. Chem. B 107 (2003) 5008]. The simulation of the IRA spectra indicated that (i) the G form adsorbate on Cu(1 1 1) takes an orientation, in which the axis bisecting the COC bond angle tilts away from the surface normal by ca. 30° within the plane perpendicular to the surface to make the CH3-CH2 bond almost parallel to the surface, and (ii) the T form adsorbate on Ag(1 1 1) takes an orientation, in which the bisecting axis tilts away by ca. 60° from the surface normal within the perpendicular plane. Comparison of these adsorption structures of MEE on the (1 1 1) substrates with those of MEE on Cu(1 1 0) and Ag(1 1 0) indicates that the structures are mainly determined by a coordination interaction of the oxygen atom to the surface metals and an attractive van der Waals interaction between the ethyl group of MEE and the substrate surfaces. The coordination interaction plays an important role on Cu(1 1 1) and Cu(1 1 0), which makes the adsorbate on the Cu substrates to take the orientations with the bisecting axis near parallel to the surface normal and to assume the G form in order to make the ethyl group parallel to the surface, which is favorable for the van der Waals interaction. In the case of MEE on the Ag substrates the attractive van der Waals interaction plays a dominant role, resulting in the T form which is more favorable for the interaction than the G form.  相似文献   

4.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

5.
This study first reports the initial growth stages of sodium chloride (NaCl) on Ag(1 1 0) at room temperature. NaCl grows in bi-layer mode along its [1 0 0] axis and gives rise to (4 × 1) and (1 × 2) reconstructed domains for coverages lower than two monolayers (ML), a minimal thickness inducing a bi-dimensional closed film. In addition, a 10 ML NaCl film has been examined by low energy electron diffraction (LEED). LEED analysis leads to the dissociation of the NaCl deposit in a few minutes. The NaCl dissociation implies Cl desorption from the surface and Na remaining on it. The residual Na is arranged in the form of a (2 × 1) surface reconstruction and is found to be strongly bounded to the Ag substrate. These findings have been established by using the X-ray photoelectron spectroscopy technique.  相似文献   

6.
M.F. Luo  G.R. Hu 《Surface science》2007,601(6):1461-1466
The surface structures of atomic hydrogen adsorbed on Cu(1 1 1) surface have been studied theoretically by using density-functional-theory calculations. The results show that 0.67 ML hydrogen adsorbed on threefold hollow sites forming (3 × 1) superstructure and 0.5 ML hydrogen adsorbed on threefold hollow sites forming (2 × 2)-2H superstructure with central H at trigonal sites induce most significant substrate reconstructions and that fits best the observed (3 × 3) and (2 × 2) LEED patterns, respectively. The potential energies for the hydrogen in these two models are also lower than those in other competing models. Accordingly, these two models are the most preferable structures for 0.5-0.67 ML and 0.3-0.5 ML hydrogen adsorbed on the Cu(1 1 1) surface. In addition, the calculations also suggest that the lateral H-H interaction is not of simple repulsion and how the adsorbed hydrogen is arrayed is important in modifying the adsorption energy.  相似文献   

7.
The consequences of Ge deposition on Br-terminated Si(1 0 0) were studied with scanning tunneling microscopy at ambient temperature after annealing at 650 K. One monolayer of Br was sufficient to prevent the formation of Ge huts beyond the critical thickness of 3 ML. This is possible because Br acts as a surfactant whose presence lowered the diffusivity of Ge adatoms. Hindered mobility was manifest at low coverage through the formation of short Ge chains. Further deposition resulted in the extension and connection of the Ge chains and gave rise to the buildup of incomplete layers. The deposition of 7 ML of Ge resulted in a rough surface characterized by irregularly shaped clusters. A short 800 K anneal desorbed the Br and allowed Ge atoms to reorganize into the more energetically favorable “hut” structures produced by conventional Ge overlayer growth on Si(1 0 0).  相似文献   

8.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

9.
Large and face dependent neutral fractions have been found recently in the scattering of Li+ by Cu(1 0 0) and Cu(1 1 1) surfaces. These results for high work function surfaces are unexpected within the ‘traditional’ picture of a Li+ ion departing from a jellium surface model. In the present work the Li+/Cu(1 0 0) and Li+/Cu(1 1 1) interacting systems are described by a previously developed bond-pair model based on the localized interactions between the projectile ion and the atoms of the surface, and on the extended features of the electronic band structure through the surface local density of states. By only including the resonant neutralization to the Li atom ground state we explained the face and energy dependences of the measured neutral fractions for large outgoing energy values. We found that the downward shift of the Li ionization level below the Fermi level caused by the short range chemical interactions, is the main responsible of a high neutralization by the resonant mechanism. The remaining differences between theory and experiment values can be explained in terms of the energy gaps and image potential states appearing in these surfaces. The calculated distance behaviours of the energy levels corresponding to the first excited (Li-1s22p) and the negative (Li-1s22s2) atomic configurations indicate that they can also participate in the ion-surface charge exchange process.  相似文献   

10.
Using scanning tunneling microscopy (STM) and time of flight secondary ion mass spectrometry (TOF/SIMS), we observed radiation effects on a Si(1 1 1)-(7 × 7) surface in the collision of a single highly charged ion (HCI) with a charge state q up to q = 50. The STM observation with atomic resolution revealed that a nanometer sized crater-like structure was created by a single HCI impact, where the size increased rapidly with q. The secondary ion yields also increased with q in which multiply charged Si ions (Sin+) were clearly observed in higher q HCI-collisions. The sputtering mechanism is briefly discussed, based on the so-called Coulomb explosion model.  相似文献   

11.
We present results on the growth and magnetic anisotropies of Co75Fe25 films grown on a Cu(1 1 0) single crystal. Angular dependent MOKE measurements show a thickness dependent, in-plane rotation of the easy axis of magnetisation of up to 60° from the [0 0 1] direction (towards [−1 1 0]). For a film thickness of 5 ML, just greater than that required for the onset of ferromagnetism, uniaxial anisotropy is observed with the easy axis along the [0 0 1] direction. As the film thickness increases this is seen to rotate in-plane towards the [−1 1 0] direction as the contribution from the cubic anisotropy constant grows. At a film thickness of 9 ML there is predominantly cubic anisotropy and at 10 ML the easy axis is rotated to 150° with respect to the [1 −1 0] axis, where it is stabilised.  相似文献   

12.
We report a low-temperature dynamics study of condensed layers of NF3 on Au(1 1 1) by time-of-flight electron-stimulated desorption ion angular distribution (TOF-ESDIAD), temperature-programmed desorption (TPD) and low-temperature scanning tunneling microscopy (LT-STM). Upon adsorption at 30 K, molecular NF3 adsorption occurs first at the step edges and at minor terrace defect sites with the formation of 2D islands. Within the islands, NF3 is adsorbed in an upright conformation via the nitrogen lone pair electrons projecting fluorine atoms away from the surface as judged by the presence of only a sharp F+ central beam in the ESDIAD pattern. At higher coverages, 3D islands start to populate the surface. Electron bombardment of a thick NF3 (∼6 ML) layer adsorbed on the Au(1 1 1) surface leads to emission of F+, N+, NF+, and ions as observed in the TOF-ESD distribution. Upon heating to ∼37 K, a sudden decrease of the and ion yield, which is not related to thermal desorption, is observed which reflects the surface migration of NF3 molecules, leading to local thinning of the film. The thinning process occurs at the temperature of onset of molecular rotations and self-diffusion in the bulk NF3 crystal. In this process, some NF3 molecules move closer to the surface which results in higher efficiency for ion neutralization by the underlying metal surface. In the TPD spectra, the monolayer desorption is observed to begin at ∼65 K, exhibiting zero-order kinetics with an activation energy of 21 kJ/mol.  相似文献   

13.
The adsorption of cyanide (CN) or oxygen atom, as well as the coadsorption of CN + O on Cu (1 0 0) surface is studied by using density functional theory (DFT) and the cluster model method. Cu14 cluster is used to simulate the surface. Perpendicular and parallel bonding geometries of CN adsorbed on Cu (1 0 0) surface are considered, respectively. The present calculations show that the CN may be absorbed on top and bridge sites by carbon atom of cyanide (C-down), and C-down on top site is the most favorable. The adsorbed C-N stretch frequencies compared with that of the gaseous CN species are all red-shifted, except the C-down on top site. The charge transfer from the surface to the CN species leads to an increase in work function for the Cu surface. The oxygen atom adsorbed on the four-fold hollow site of Cu (1 0 0) is the most favorable, and is consistent with the experimental study. The coadsorption of O at a four-fold hollow site tends to block adsorption of CN at the nearby sites. If O coverage increases, the CN may be adsorbed on the top and bridges sites with the C-down model. The reaction CN + O → OCN on the Cu (1 0 0) is predicted to be exothermic, and formed OCN species may be stably absorbed on the Cu (1 0 0).  相似文献   

14.
The adsorption of atomic Se on a Fe(1 1 0) surface is examined using the density functional theory (DFT). Selenium is adsorbed in high-symmetry adsorption sites: the -short and long-bridge, and atop sites at 1/2, 1/4, and 1 monolayer (ML) coverages. The long bridge (LB) site is found to be the most stable, followed by the short bridge (SB) and top sites (T). The following overlayer structures were examined, p(2 × 2), c(2 × 2), and p(1 × 1), which correspond to 1/4 ML, 1/2 ML, and 1 ML respectively. Adsorption energy is −5.23 eV at 1/4 ML. Se adsorption results in surface reconstruction, being more extensive for adsorption in the long bridge site at 1/2 ML, with vertical displacements between +8.63 and −6.69% -with regard to the original Fe position-, affecting the 1st and 2nd neighbours. The largest displacement in x or y-directions was determined to be 0.011, 0.030, and 0.021 Å for atop and bridge sites. Comparisons between Se-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the Se. At the long bridge site, the presence of Se causes a decrease in the surface Fe d-orbital density of states between 4 and 5 eV below Fermi level. The density of states present a contribution of Se states at −3.1 eV and −12.9 eV. stabilized after adsorption. The Fe-Fe overlap population decrease and a Fe-Se bond are formed at the expense of the metallic bond.  相似文献   

15.
We investigated Bi thin film growth on Ge(1 1 1) by using low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). In the submonolayer regime, adsorbed Bi atoms form patches of the (2×1) structure. However, the structure does not grow to a long-range order. Following the formation of a (1×1) monolayer (ML) film, two-dimensional (1 1 0)-orientated Bi islands grow. The film orientation changes from (1 1 0) to (1 1 1) at 6-10 ML. The (1 1 0)-oriented Bi film shows a six-domain LEED pattern with missing spots, associated with a glide-line symmetry. The hexagonal (1 1 1) film at 14 ML has a lattice constant 2% smaller than bulk Bi(1 1 1).  相似文献   

16.
K. Ozawa  Y. Oba 《Surface science》2009,603(13):2163-1659
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV.  相似文献   

17.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

18.
Jisang Hong 《Surface science》2006,600(11):2323-2328
Based on the full-potential linearized augmented plane wave (FLAPW) calculations, various magnetic properties of ultra thin face centered cubic (fcc) Co(0 0 1) film and V adsorbed systems on Co(0 0 1) surface are explored. It was found that the V film grown on fcc Co(0 0 1) surface has large induced magnetic moment and the direction of magnetization is antiparallel to that of Co atom in the submonolayer coverage. Very interestingly, we found that the surface alloy and 0.5 ML adsorbed V/Co(0 0 1) systems have perpendicular magnetocrystalline anisotropy and the magnitude of anisotropy energy in 0.5 ML V on fcc Co(0 0 1) surface is greatly larger than that of surface alloy, while we observed in-plane magnetization in pure fcc Co(0 0 1) film. It was found that the spin-orbit interaction through spin-flip process cannot be ignored, therefore the simple relation with orbital anisotropy is not applicable in the interpretation of magnetocrystalline anisotropy.  相似文献   

19.
M.F. Luo  G.R. Hu 《Surface science》2009,603(8):1081-1086
With density-functional-theory calculations, we have studied coverage-dependent absorption of H atoms into the sub-surface below a face-centered-cubic (fcc) hollow site of Cu(1 1 1). Both frozen and relaxed surface lattices were considered when the atomic H migrated from the surface to the sub-surface. The potential energy curve for the absorbing H shows that the surface site is in general favored over the sub-surface site, and this trend varies little with the H coverage (0.11-0.67 ML). If the hexagonal-close-packed (hcp) hollow sites immediately vicinal to the absorbing H are pre-adsorbed with other H atoms, the surface adsorption potential is greatly increased, because of the repulsive H-H interaction, to a value near, or even greater than, the sub-surface absorption potential; when two or three H atoms (on the hcp sites) are beside the absorbing H, the energy barrier for the sub-surface absorption is decreased, whereas that for diffusion from the sub-surface to the surface is enhanced. These results indicate that, on an H-saturated Cu(1 1 1) surface (0.67 ML), the sub-surface sites below the fcc sites with two or three neighboring H atoms can trap the sub-surface H.  相似文献   

20.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号