首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface structure, determined by scanning tunneling microscopy (STM), surface morphology, determined by atomic force microscopy (AFM), and surface composition, determined by X-ray photoelectron spectroscopy (XPS) of 20.0 nm Si0.8Ge0.2 quantum dots formed at 800 °C and encapsulated with 0-10 nm of Si at 500 °C and 800 °C are presented. It is observed that the quantum dot surface morphology changes during the Si encapsulation at 800 °C by the smoothing of the quantum dots. The height of the quantum dots decreases faster than can be accounted for from the amount of Si deposited, indicating that there is movement of material out of the quantum dots during the encapsulation process. Encapsulation at 500 °C results in a retention of the quantum dot surface morphology with increased Ge segregation compared to Si encapsulation at 800 °C. We conclude that the changing surface morphology at 800 °C is not the result of Ge segregation but due to intermixing resulting from the tensile strain of Si depositing on SiGe.  相似文献   

2.
Strain relaxation of the epitaxial SiGe layer and Ge diffusion during nickel silicidation by rapid thermal annealing the structure of Ni(≅14 nm)/cap-Si(≅26 nm)/Si0.83Ge0.17/Si(0 0 1) at the elevated annealing temperatures, TA, were investigated by X-ray diffraction analyses of high-resolution ω-2θ scan and reciprocal space mapping. The analyses showed a much larger strain relaxation at a lower TA and a reduction in Ge content in the SiGe layer of Ni/SiGe/Si(0 0 1) after thermal annealing compared to the case of cap-Si/SiGe/Si(0 0 1). The results indicate that the strain relaxation of the SiGe layers in NiSi/SiGe/Si(0 0 1) is related to the phenomena of NiSi agglomeration and penetration into the SiGe layer during silicidation at elevated anneal temperatures ≥750 °C. At elevated TA ≥ 750 °C, Ge diffused into the intact cap-Si area during silicidation.  相似文献   

3.
在本文中我们首次报道了p型掺杂的自组织Si/Ge量子点中空穴能级子带间的电子拉曼散射,此电子跃迁的能量为105meV。Si/Ge量子点Ge Ge模的共振拉曼散射表明此空穴能级间的电子拉曼散射与Γ点附近的E0(≈2.52eV)发生了共振,而E1的能量小于2.3eV.变温实验和偏振实验进一步证实了我们的指认。所有观测的实验数据与6 bandk·p能带结构理论的计算结果吻合得很好。  相似文献   

4.
We report the first resonant electronic Raman spectroscopy study of discrete electronic transitions within small p-doped self-assembled Si/Ge quantum dots (QDs). A heavy hole (hh) to light hole (lh) Raman transition with a dispersionless energy of 105 meV and a resonance energy of the hh states to virtually localised electrons at the direct band gap of 2.5 eV are observed. The hh–lh transition energy shifts to lower values with increasing annealing temperature due to significant intermixing of Si and Ge in the QDs. Structural parameters of the small Si/Ge dots have been determined and introduced into 6-band k·p valence band structure calculations. Both the value of the electronic Raman transition of localised holes as well as the resonance energy at the E0 gap are in excellent agreement with the calculations.  相似文献   

5.
The adsorption process of silane (SiH4) on a SiGe(0 0 1) surface has been investigated by using infrared absorption spectroscopy in a multiple internal reflection geometry. We have observed that SiH4 dissociatively adsorbs on a SiGe(0 0 1) surface at room temperature to generate Si and Ge hydrides. The dissociation of Si- and Ge-hydride species is found to strongly depend on the Ge concentration of the SiGe crystal. At a low Ge concentration of 9%, Si monohydride (SiH) and dihydride (SiH2) are preferentially produced as compared to the higher Si hydride, SiH3. At higher Ge concentrations of 19%, 36%, on the other hand, monohydrides of SiH and GeH and trihyderide SiH3 are favorably generated at the initial stage of the adsorption. We interpret that when SiH4 adsorbs on the SiGe surface, hydrogen atoms released from the SiH4 molecule stick onto Ge or Si sites to produce Si or Ge monohydrides and the remaining fragments of -SiH3 adsorb both on Si and Ge sites. The SiH3 species is readily decomposed to lower hydrides of SiH and SiH2 by releasing H atoms at low Ge concentrations of 0% and 9%, while the decomposition is suppressed by Ge in cases of 19% and 36%.  相似文献   

6.
SiH4 and GeH4 dissociative adsorptions on a buckled SiGe(1 0 0)-2 × 1 surface have been analyzed using density functional theory (DFT) at the B3LYP level. The Ge alloying in the Si(1 0 0)-2 × 1 surface affects the dimer buckling and its surface reactivity. Systematic Ge influences on the reaction energetics are found in SiH4 and GeH4 reactions with four dimers of Si-Si, Ge-Si, Ge-Ge, and Si-Ge (∗ denotes the protruded atom). On a half H-covered surface, the energy barriers for silane and germane adsorption are higher than those on the pristine surface. The energy barrier for silane adsorption is higher than the corresponding barrier for germane adsorption. Rate constants are also calculated using the transition-state theory. We conclude that the SiGe surface reactivity in adsorption reaction depends on the Ge presence in dimer form. If the surface Ge is present in form of Ge-Ge, the surface reactivity decreases as the Ge-Ge content increases. If the surface Ge prefers to be in form of Ge-Si at low Ge contents, the surface reactivity increases first, then decreases at high Ge surface contents when Ge-Ge prevails. The calculated rate constant ratio of GeH4 adsorption on Si-Si over Ge-Ge at 650 °C is 2.1, which agrees with the experimental ratio of GeH4 adsorption probability on Si(1 0 0) over Si(1 0 0) covered by one monolayer Ge. The experimental ratio is 1.7 measured through supersonic molecular beam techniques. This consistency between calculation and experimental results supports that one monolayer of Ge on Si(1 0 0) exists in form of Ge-Ge dimer.  相似文献   

7.
X-ray triple-axis diffractometry (XRTD) was used to characterize heterostructure Si/SiGe/Si on silicon-on-insulator (SOI) subjected to in situ low-temperature annealing. Crystallographic tilt, lattice constant and relaxation percentage were examined, respectively. Two peaks have been observed in (0 0 4) reciprocal lattice mappings (RLMs) of Si layers. The (0 0 4) RLMs indicate that Si cladding is in tensile strain. We have also found two peaks with different k and k in (1 1 3) asymmetric RLMs of Si layers. It is deduced from comprehensive analyses on (0 0 4) and (1 1 3) RLMs that Ge diffusion and in-plane tensile strain lead to 2θ shift of the Si layers underneath SiGe layer in (0 0 4) RLMs. And the diffusion concentration of Ge accurately determined by XRTD is mole fraction 0.84%.  相似文献   

8.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

9.
Infrared absorption has been used to investigate the subband structures in SiGe/Si quantum wells. The quantum wells are prepared using RRH/VLP-CVD and consist of 20 periods of and 60 periods of . The good periodical and interface sharpness of the SiGe/Si quantum wells have been shown by Auger Electron Spectroscopy (AES). The absorption peaks due to transitions between the hole subbands and the conduction band have been observed in infrared absorption spectra. The transverse photocurrent spectrum parallel to the growth plane have also shown absorption peaks due to transitions between the heavy and light hole band states and the conduction band states in quantum wells.  相似文献   

10.
High-κ dielectrics SrZrO3 were prepared on Ge(0 0 1) substrate using pulse laser deposition, and band alignments and thermal annealing effects were studied with high resolution X-ray photoemission spectroscopy. Valence and conduction band offsets at this interface were measured to be 3.26 eV and 1.77 eV, respectively. Interfacial Ge oxide layers were found at the interface. After annealing at 600 °C, the interfacial Ge oxide layers were eliminated, and the valence band offset increased to 3.50 eV, but the amorphous SrZrO3 became polycrystalline in the meantime.  相似文献   

11.
Fabrication of device structures based on laterally self-ordered systems without the use of expensive and time-consuming nanolithography could have undoubted advantages. For such applications, it is proposed to use misfit dislocation networks from partially relaxed SiGe layers on (1 0 0) Si substrate as a template for the growth of highly ordered SiGe islands. Ion bombardment during molecular beam epitaxy of metastable SiGe layers leads to such a partial relaxation by misfit dislocation networks. The ions are generated by the interaction of the evaporated Si flux with the electrons in an electron beam evaporator, which causes a partial ionization of Si atoms in the molecular beam. We demonstrate by atomic force microscopy that subsequent growth of SiGe on such relaxed SiGe (25-50% Ge) layers leads to the formation of uniform three-dimensional islands highly ordered in 〈1 1 0〉 directions.  相似文献   

12.
Results are presented of a photoemission study of the electronic structure of SiON layers formed by a pulsed-RF decoupled plasma nitration (DPN) of ultra-thin SiO2 grown base layers approximately 1.0 nm thick. The optical thickness of these device grade nitrided dielectric layers was in the range 1.4-1.6 nm. X-ray photoelectron spectroscopy (XPS) studies indicate that the nitrogen is incorporated in a single chemical environment at concentration levels in the range 15-17%. Angle resolved XPS measurements show that the nitrogen is distributed through the layer, with the binding energy of the N 1s peak at 398.3 eV which is indicative of a Si3N4-like chemical species in an oxide environment. High resolution core level photoemission studies of the spin orbit stripped Si 2p4+ peak revealed full width half maximum values in the range 1.4-1.55 eV, which are significantly larger than the 1.15 eV value reported for SiO2 layers. Synchrotron radiation photoemission studies of the valence band spectra enable the valence band off-set at the Si/SON interface to be evaluated as 2.3 eV and to infer a conduction band off-set of 2.1 eV.  相似文献   

13.
C.F. Cai  J.X. Si  Y. Xu 《Applied Surface Science》2010,256(20):6057-6059
The band offset at the interface of PbTe/Ge (1 0 0) heterojunction was studied by the synchrotron radiation photoelectron spectroscopy. A valence band offset of ΔEV = 0.07 ± 0.05 eV, and a conduction band offset of ΔEC = 0.27 ± 0.05 eV are concluded. The experimental determination of the band offset for the PbTe/Ge interface should be beneficial for the heterojunction to be applied in new optoelectronic and electronic devices.  相似文献   

14.
SiGe/Si quantum wells (QWs) with different Boron doping concentrations were grown by molecular beam epitaxy (MBE) on p-type Si(1 0 0) substrate. The activation energies of the heavily holes in ground states of QWs, which correspond to the energy differences between the heavy hole ground states and Si valence band, were measured by admittance spectroscopy. It is found that the activation energy in a heavily doped QW increases with doping concentration, which can be understood by the band alignment changes due to the doping in the QWs. Also, it is found that the activation energy in a QW with a doping concentration of 2 × 1020 cm−3 becomes larger after annealing at a temperature of 685 °C, which is attributed to more Boron atoms activation in the QW by annealing.  相似文献   

15.
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase.  相似文献   

16.
Low energy (±80 eV) Ar plasma etching has been successfully used to etch several semiconductors, including GaAs, GaP, and InP. We have studied the only prominent defect, E0.31, introduced in n-type Sb-doped Ge during this process by deep level transient spectroscopy (DLTS). The E0.31 defect has an energy level at 0.31 eV below the conduction band and an apparent capture cross-section of 1.4×10−14 cm2. The fact that no V-Sb defects and no interstitial-related defects were observed implies that the etch process did not introduce single vacancies or single interstitials. Instead it appears that higher order vacancy or interstitial clusters are introduced due to the large amount of energy deposited per unit length along the path of the Ar ions in the Ge. The E0.31 defect may therefore be related to one of these defects. DLTS depth profiling revealed the E0.31 concentration had a maximum (6×1013 cm−3) close to the Ge surface and then it decreased more or less exponentially into the Ge. Finally, annealing at 250 °C reduced the E0.31 concentration to below the DLTS detection limit.  相似文献   

17.
This paper aims to provide the performance characteristics of proposed, strain balanced direct band gap multiple quantum wells (MQWs) hetero phototransistor (HPT) made of SiGeSn/GeSn alloys grown on Si substrate which is compatible with recent CMOS fabrication technology. This also presents a comprehensive comparison of this proposed structure with the existing HPT structure made of indirect gap Ge/SiGe MQWs. Alloys of Ge and Sn grown on Si platform shows about tenfold increase in absorption over Ge at C and L-bands due to direct nature of band gap in GeSn. Initial work begins the solution of continuity equation to solve the different terminal current densities and optical gain of the multiple quantum well structure. Main analysis was concentrated on finding the external quantum efficiency depending on the doping variations of emitter and base, base width etc. Finally the photocurrent density variations are estimated for the structure and compared with existing indirect band gap HPT. The calculated values for direct band gap GeSn HPT device are found to be comparable with those for indirect band gap SiGe device to flourish as a potential candidate of photo detectors for the present day telecommunication network.  相似文献   

18.
The properties of ultra-thin oxide/Si and very-thin oxide/Si structures prepared by wet chemical oxidation in nitric acid aqueous solutions (NAOS) and passivated in HCN aqueous solutions were investigated by electrical, optical and structural methods. n- and p-doped (1 0 0) crystalline Si substrates were used. There were identified more types of interface defect states in dependence on both post-oxidation treatment and passivation procedure. On samples prepared on n-type Si, continuous spectrum of defect states of 0.05-0.2 eV range and discrete defect traps, ∼ECB − 0.26 eV and ∼ECB − 0.39 eV, were found. All mentioned defects are related with various types of Si dangling bonds and/or with SiOx precipitates. Post-metallization annealing of investigated MOS structures reduced the interface defect density and suppressed the leakage currents. It did not change spectral profile of interface defect states in the Si band gap. In addition, there are presented following two optical phenomena: relation between amplitude of photoluminescence signal of NAOS samples and parameters of chemical oxidation process and quantum confinement effect observed on samples containing Si grains of size less as ∼2 nm.  相似文献   

19.
High-quality relaxed SiGe films on Si (0 0 1) have been demonstrated with a buffer layer containing modified SiGe (m-SiGe) islands in ultra-high vacuum chemical vapor deposition (UHV/CVD) system. The m-SiGe islands are smoothened by capping an appropriate amount of Si and the subsequent annealing for 10 min. This process leads to the formation of a smooth buffer layer with non-uniform Ge content. With the m-SiGe-dot multilayer as a buffer layer, the 500-nm-thick uniform Si0.8Ge0.2 layers were then grown. These m-SiGe islands can serve as effective nucleation centers for misfit dislocations to relax the SiGe overlayer. Surface roughness, strain relaxation, and crystalline quality of the relaxed SiGe overlayer were found to be a function of period's number of the m-SiGe-dot multilayer. By optimizing period number in the buffer, the relaxed Si0.8Ge0.2 film on the 10-period m-SiGe-dot multilayer was demonstrated to have a threading dislocation density of 2.0 × 105 cm−2 and a strain relaxation of 89%.  相似文献   

20.
Using first-principles total-energy calculations, we have investigated the adsorption and diffusion of Si and Ge adatoms on Ge/Si(0 0 1)-(2 × 8) and Ge/Si(1 0 5)-(1 × 2) surfaces. The dimer vacancy lines on Ge/Si(0 0 1)-(2 × 8) and the alternate SA and rebonded SB steps on Ge/Si(1 0 5)-(1 × 2) are found to strongly influence the adatom kinetics. On Ge/Si(0 0 1)-(2 × 8) surface, the fast diffusion path is found to be along the dimer vacancy line (DVL), reversing the diffusion anisotropy on Si(0 0 1). Also, there exists a repulsion between the adatom and the DVL, which is expected to increase the adatom density and hence island nucleation rate in between the DVLs. On Ge/Si(1 0 5)-(1 × 2) surface, the overall diffusion barrier of Si(Ge) along direction is relative fast with a barrier of ∼0.83(0.61) eV, despite of the large surface undulation. This indicates that the adatoms can rapidly diffuse up and down the (1 0 5)-faceted Ge hut island. The diffusion is also almost isotropic along [0 1 0] and directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号