首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

2.
We use an ab initio pseudopotential method within the local-density approximation to determine the structural and electronic properties of the BeSe(1 1 0) surface. The relaxed geometry of this surface shows tilted cation-anion chains, with the anions being raised. The general pattern of the electronic structure of this surface is similar to that on other II-VI(1 1 0) surfaces. The phonon spectrum and corresponding surface density of states are also calculated using a linear response approach based on the density functional perturbation theory. In our calculations, we have found two localized phonon modes in the acoustic-optical gap region. The atomic displacement patterns of these surface phonon modes are presented and discussed.  相似文献   

3.
The reaction of halogen-based etchants with n-InAs (1 1 1)A and the resulting surface morphology and surface electronic structure are investigated using field emission scanning electron microscopy and Raman spectroscopy. Using the intensity ratio of the unscreened longitudinal optical (LO) phonon to the transverse optical (TO) phonon in the Raman spectrum, a significant reduction in band bending is deduced after exposure of the InAs surface to HCl:H2O, Br–methanol and I–ethanol for moderate times and concentrations. These procedures also lead to smooth and defect-free InAs surfaces. The improvements in surface properties are reversed, however, if the concentrations of the etchants are increased or the etch time is too long. In the worst cases, pit formation and inverted pyramids with {1 1 1} side facets are observed. The influence of the etchant concentration and etch time on the morphological and electronic properties of the etched surfaces is reported.  相似文献   

4.
The AES, EELS, AFM and resistance measurement investigations have been performed to determine the growth mechanism, electronic structure and resistance-thickness dependence of Co layers on silicon at the thickness range from submonolayer up to several monolayer coverage. These layers were obtained under UHV high-rate deposition with using re-evaporation of Co from a Ta foil. The layer-by-layer growth of Co on Si(1 1 1) with some light segregation of Si has been found on the AES data. An enlarged and reduced concentration of valence electrons in the interface Si layer at the thickness ranges 0-1 Å and in the Co film at d = 1-2 Å has been observed. Resistance measurement of the Co film showed a fast decrease of the resistance down to some value limited by quantum-size effect in accordance with the formation of a two-dimensional Co phase at d = 1-2 Å.  相似文献   

5.
In this work we have performed total-energy calculations on the geometric structure and adsorption properties of Cu(1 0 0) c(2 × 2)/N surface by using the density-functional theory and the projector-augmented wave method. It is concluded that nitrogen atom was adsorbed on a FFH site with a vertical distance of 0.2 Å towards from surface Cu layer. The bond length of the shortest Cu-N bonding is calculated to be 1.83 Å. Geometry optimization calculations exclude out the possibilities of adsorbate induced reconstruction mode suggested by Driver and Woodruff and the atop structural model. The calculated workfunction for this absorbate-adsorbent system is 4.63 eV which is quite close to that of a clean Cu(1 0 0) surface. The total-energy calculations showed that the average adsorption energy per nitrogen in the case of Cu(1 0 0) c(2 × 2)-N is about 4.88 eV with respect to an isolated N atom. The absorption of nitrogen on Cu(1 0 0) surface yields the hybridization between surface Cu atoms and N, and generates the localized surface states at −1.0 eV relative to Fermi energy EF. The stretch mode of the adsorbed nitrogen at FFH site is about 30.8 meV. The present study provides a strong criterion to account for the local surface geometry in Cu(1 0 0) c(2 × 2)/N surface.  相似文献   

6.
The vertical bonding distance of 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) above the Au(1 1 1) surface has been measured by the normal incidence X-ray standing wave (NIXSW) technique. The carbon skeleton of PTCDA has a vertical distance of D = (3.27 ± 0.02) Å to the Au(1 1 1) substrate. This distance corresponds very nearly to the sum of the van der Waals radii of carbon and gold, suggesting the adsorption to be a physisorptive one. In contrast, the PTCDA/Ag(1 1 1) interface which according to spectroscopic data follows the standard model of chemisorption very closely, shows a considerably smaller bonding distance of D = (2.86 ± 0.01) Å [A. Hauschild, K. Karki, B.C.C. Cowie, M. Rohlfing, F.S. Tautz, M. Sokolowski, Phys. Rev. Lett. 94 (2005) 036106, comment: Rurali et al., Phys. Lett. 95 (2005) 209205, reply: Phys. Rev. Lett. 95 (2005) 209206]. The different vertical adsorption heights of PTCDA on gold and silver are discussed in relation to the different bonding mechanisms on both noble metal surfaces.  相似文献   

7.
Experimental observations indicate that removing bridging oxygen atoms from the TiO2 rutile (1 1 0) surface produces a localised state approximately 0.7 eV below the conduction band. The corresponding excess electron density is thought to localise on the pair of Ti atoms neighbouring the vacancy; formally giving two Ti3+ sites. We consider the electronic structure and geometry of the oxygen deficient TiO2 rutile (1 1 0) surface using both gradient-corrected density functional theory (GGA DFT) and DFT corrected for on-site Coulomb interactions (GGA + U) to allow a direct comparison of the two methods. We show that GGA fails to predict the experimentally observed electronic structure, in agreement with previous uncorrected DFT calculations on this system. Introducing the +U term encourages localisation of the excess electronic charge, with the qualitative distribution depending on the value of U. For low values of U (?4.0 eV) the charge localises in the sub-surface layers occupied in the GGA solution at arbitrary Ti sites, whereas higher values of U (?4.2 eV) predict strong localisation with the excess electronic charge mainly on the two Ti atoms neighbouring the vacancy. The precise charge distribution for these larger U values is found to differ from that predicted by previous hybrid-DFT calculations.  相似文献   

8.
We have performed density-functional theory calculations to study the atomic structure of the K/Pd(1 0 0)-p(2 × 2) and -c(2 × 2) surfaces formed at 0.25 ML and 0.5 ML, respectively. We find that K atoms prefer the hollow site with the K adsorption height 2.44 Å for p(2 × 2) and 2.50 Å c(2 × 2). The first interlayer spacing (d12) of the Pd(1 0 0) substrate appears slightly contracted from the bulk value as Δd12 = −0.8% and −0.3% for p(2 × 2) and c(2 × 2), respectively. The calculated contraction Δd12 = −0.3% for c(2 × 2) is not in accord with the expansion Δd12 = +1.3% reported by a low-energy electron diffraction (LEED) study. As the origin of this difference, a possibility of hydrogen contamination of the surface sample used in the LEED study is suggested: Our calculations show that the d12 of K/Pd(1 0 0)-c(2 × 2) increases linearly with the coverage of H coadsorption, which leads to an estimation for the H coverage of the surface sample as 0.1-0.4 ML.  相似文献   

9.
Spin-polarized scanning tunneling microscopy and spectroscopy (SP-STM/STS) has been performed on clean and sulfur-covered three-dimensional Fe islands on W(1 1 0). Upon dosing with H2S the island surface is covered with 1/3 ML S leading to a c(3 × 1) reconstruction. The characteristic magnetic vortex structure is observable before and after dosing, even though the electronic structure of the surface is modified as is shown by SP-STS.  相似文献   

10.
We have studied the correlation between the valence electron configuration and the electronic structure of M2AC(0 0 0 1) surfaces (M = Ti, V, Cr; A = Al, Ga, Ge) by density functional theory. The A surface termination is the most stable configuration for all systems studied according to our surface energy data. As the M valence electron population is increased, the surface energy increases by 22% and 12% for A = Al and Ga, respectively, while it decreases by 29% for A = Ge. This can be understood by evaluating the valence electron concentration induced changes in the surface density of states. Antibonding surface Md-Ap states are present as Ti is substituted by Cr in M2AC(0 0 0 1) for A = Al and Ga, while antibonding surface Md-Ap states are not present as Ti is substituted by Cr in M2GeC(0 0 0 1).  相似文献   

11.
V. Joco  P. Segovia  J. Fujii 《Surface science》2006,600(18):3851-3855
The c(5√2 × √2)R45°-Pb/Cu(1 0 0) surface phase is investigated by means of angle resolved ultraviolet photoemission and low energy electron diffraction in the temperature range between 300 and 550 K. We identify and characterize a temperature-induced surface phase transition at 440 K from the room temperature c(5√2 × √2) R45° phase to a (√2 × √2)R45° structure with split superstructure spots. The phase transition is fully reversible and takes place before the two-dimensional melting of the structure at 520 K. The electronic structure of the split (√2 × √2)R45° phase is characterized by a metallic free-electron like surface band. This surface band is backfolded with c(5√2 × √2)R45° periodicity phase at room temperature, giving rise to a surface band gap at the Fermi energy. We propose that a gain in electronic energy explains in part the stability of the c(5√2 × √2)R45° phase.  相似文献   

12.
It has been established that the arced streaks connecting four spots observed in LEED for a Li system adsorbed on a Cu(0 0 1) surface originate from the Bragg reflection from parallel adatomic lines on a c(2 × 2) lattice site. For example, one streak at about ky = π/a originates from the parallel atomic lines including two atoms separated at a distance of dy = 2a, which is the second-neighbor distance in a c(2 × 2) lattice.The c(2 × 2) structure sites consist of two sublattices with y = 2na and y = (2n + 1)a. Here, the difference in the number of adatoms on the two sublattices is the cause of the intensity of the midpoint of the streak, where the differences depend on the coverage of adatoms, Θ.In this study, using a lattice gas model on the substrate lattice with Monte Carlo simulation, we obtain the coverage and temperature dependence of intensities of the spots for the c(2 × 2) structure and the streaks.We found that the intensity of the streaks increase and decrease within the coverage range 0 < Θ < 0.5. That of the spots increases monotonically in this coverage range. These theoretical findings are similar to the experimental results.On the other hand, as temperature is increased, the intensity of the streaks increases and becomes saturated. We found a similar phenomenon using analytical calculation by statistical mechanics. In addition, the intensity of the spots decreased with the second-order transition.  相似文献   

13.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

14.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

15.
Adsorption of carbon monoxide on Pd(3 1 1) and (2 1 1) stepped surfaces has been investigated by the extended London-Eyring-Polyani-Sato (LEPS) method constructed using a 5-parameter Morse potential. The calculated results show that there exist common characteristics of CO adsorption on the two surfaces. At low coverage, CO occupies threefold hollow site of the (1 1 1) terrace and is tilted with respect to the surface normal. Among the threefold hollow sites on the (1 1 1) terrace, the nearer the site is to the step, the greater is the influence of the step. The twofold bridge site on the (1 0 0) step is also a stable adsorption site at high coverage. Because of the different lengths of the (1 1 1) terraces, the (3 1 1) and (2 1 1) stepped surfaces have different characteristics. A number of new sites are exposed on the boundary regions, including the fourfold hollow site (H4) of the (3 1 1) surface and the fivefold hollow site (H5) of the (2 1 1) surface. At high coverage, CO resides in the H5 site of the (2 1 1) surface, but the H4 site of the (3 1 1) surface is not a stable adsorption site. This study further shows that the on-top site on the (1 0 0) step of Pd(3 1 1) is a stable adsorption site, but the same type of site on Pd(2 1 1) is not.  相似文献   

16.
Infrared reflection absorption (IRA) spectra measured for dimethyl ether (DME) adsorbed at 80 K on Cu(1 1 1) and Ag(1 1 1) give IR bands belonging only to the A1 and B2 species, indicating that the adsorbate takes on an orientation in which the C2 axis bisecting the COC bond angle tilts away from the surface normal within the plane perpendicular to the substrates. The DFT method was applied to simulate the IRA spectra, indicating that the tilt angles of DME on Cu(1 1 1) and Ag(1 1 1) are about 50° and 55°, respectively, at submonolayer coverages. The results are in contrast to the case of DME on Cu(1 1 0) and Ag(1 1 0), where the C2 axis is perpendicular to the substrates [T. Kiyohara et al., J. Phys. Chem. A 106 (2002) 3469]. Methyl ethyl ether (MEE) adsorbed at 80 K on Cu(1 1 1) gives IRA bands mainly ascribable to the gauche (G) form, whereas the IRA spectra measured for MEE on Ag(1 1 1) are characterized by the trans (T) form. The rotational isomers are identical with those on Cu(1 1 0) and Ag(1 1 0); i.e., MEE on Cu(1 1 0) takes the G form and the adsorbate on Ag(1 1 0) the T form [T. Kiyohara et al., J. Phys. Chem. B 107 (2003) 5008]. The simulation of the IRA spectra indicated that (i) the G form adsorbate on Cu(1 1 1) takes an orientation, in which the axis bisecting the COC bond angle tilts away from the surface normal by ca. 30° within the plane perpendicular to the surface to make the CH3-CH2 bond almost parallel to the surface, and (ii) the T form adsorbate on Ag(1 1 1) takes an orientation, in which the bisecting axis tilts away by ca. 60° from the surface normal within the perpendicular plane. Comparison of these adsorption structures of MEE on the (1 1 1) substrates with those of MEE on Cu(1 1 0) and Ag(1 1 0) indicates that the structures are mainly determined by a coordination interaction of the oxygen atom to the surface metals and an attractive van der Waals interaction between the ethyl group of MEE and the substrate surfaces. The coordination interaction plays an important role on Cu(1 1 1) and Cu(1 1 0), which makes the adsorbate on the Cu substrates to take the orientations with the bisecting axis near parallel to the surface normal and to assume the G form in order to make the ethyl group parallel to the surface, which is favorable for the van der Waals interaction. In the case of MEE on the Ag substrates the attractive van der Waals interaction plays a dominant role, resulting in the T form which is more favorable for the interaction than the G form.  相似文献   

17.
V2O3(0 0 0 1) films have been grown epitaxially on Au(1 1 1) and W(1 1 0). Under typical UHV conditions these films are terminated by a layer of vanadyl groups as has been shown previously [A.-C. Dupuis, M. Abu Haija, B. Richter, H. Kuhlenbeck, H.-J. Freund, V2O3(0 0 0 1) on Au(1 1 1) and W(1 1 0): growth, termination and electronic structure, Surf. Sci. 539 (2003) 99]. Electron irradiation may remove the oxygen atoms of this layer. H2O adsorption on the vanadyl terminated surface and on the reduced surface has been studied with thermal desorption spectroscopy (TDS), vibrational spectroscopy (IRAS) and electron spectroscopy (XPS) using light from the BESSY II electron storage ring in Berlin. It is shown that water molecules interact only weakly with the vanadyl terminated surface: water is adsorbed molecularly and desorbs below room temperature. On the reduced surface water partially dissociates and forms a layer of hydroxyl groups which may be detected on the surface up to T ∼ 600 K. Below ∼330 K also co-adsorbed molecular water is detected. The water dissociation products desorb as molecular water which means that they recombine before desorption. No sign of surface re-oxidation could be detected after desorption, indicating that the dissociation products desorb completely.  相似文献   

18.
The c(4 × 2) structures in (0 0 1) surfaces of Si and Ge have been studied by low-energy electron diffraction (LEED). Using a proper cleaning method for the Si surface, we were able to observe clear c(4 × 2) LEED patterns up to incident energy of ∼400 eV as well as the Ge surface. Extensive experimental intensity-voltage curves allowed us to optimize the asymmetric dimer model up to the eighth layer (including the dimer layer) in depth in the dynamical LEED calculation. Optimized structural parameters are almost the same for the Si and Ge except for the height of the buckled-up atom of the asymmetric dimer. For the Ge surface, the structural parameters are in excellent agreement with those obtained by a previous theoretical calculation. The tilt angle and bond length of the dimer are 18 ± 1 (19 ± 1)° and 2.4 ± 0.1 (2.5 ± 0.1) Å for the Si(0 0 1) (Ge(0 0 1)), respectively.  相似文献   

19.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

20.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号