首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the low-coverage regime of vanadium deposition on the Si(1 1 1)-7 × 7 surface using a combination of scanning tunnelling microscopy (STM) and density-functional theory (DFT) adsorption energy calculations. We theoretically identify the most stable structures in this system: (i) substitutional vanadium atoms at silicon adatom positions; (ii) interstitial vanadium atoms between silicon adatoms and rest atoms; and (iii) interstitial vanadium - silicon adatom vacancy complexes. STM images reveal two simple vanadium-related features near the Si adatom positions: bright spots at both polarities (BB) and dark spots for empty and bright spots for filled states (DB). We relate the BB spots to the interstitial structures and the DB spots to substitutional structures.  相似文献   

2.
Monolayer Ga adsorption on Si surfaces has been studied with the aim of forming p-delta doped nanostructures. Ga surface phases on Si can be nitrided by N2+ ion bombardment to form GaN nanostructures with exotic electron confinement properties for novel optoelectronic devices. In this study, we report the adsorption of Ga in the submonolayer regime on 7 × 7 reconstructed Si(1 1 1) surface at room temperature, under controlled ultrahigh vacuum conditions. We use in-situ Auger electron spectroscopy, electron energy loss spectroscopy and low energy electron diffraction to monitor the growth and determine the properties. We observe that Ga grows in the Stranski-Krastanov growth mode, where islands begin to form on two flat monolayers. The variation in the dangling bond density is observed during the interface evolution by monitoring the Si (LVV) line shape. The Ga adsorbed system is subjected to thermal annealing and the residual thermal desorption studied. The difference in the adsorption kinetics and desorption dynamics on the surface morphology is explained in terms of strain relaxation routes and bonding configurations. Due to the presence of an energetic hierarchy of residence sites of adatoms, site we also plot a 2D phase diagram consisting of several surface phases. Our EELS results show that the electronic properties of the surface phases are unique to their respective structural arrangement.  相似文献   

3.
By means of cluster models coupled with density functional theory, we have studied the hydroboration of the Ge(1 0 0)-2 × 1 surface with BH3. It was found that the Ge(1 0 0) surface exhibits rather different surface reactivity toward the dissociative adsorption of BH3 compared to the C(1 0 0) and Si(1 0 0) surfaces. The strong interaction still exists between the as-formed BH2 and H adspeices although the dissociative adsorption of BH3 on the Ge(1 0 0) surface occurs readily, which is in distinct contrast to that on the C(1 0 0) and Si(1 0 0) surfaces. This can be understood by the electrophilic nature of the down Ge atom, which makes it unfavourable to form a GeH bond with the dissociating proton-like hydrogen. Alternatively, it can be attributed to the weak proton affinity of the Ge(1 0 0) surface. Nevertheless, the overall dissociative adsorption of BH3 on group IV semiconductor surfaces is favourable both thermodynamically and kinetically, suggesting the interesting analogy and similar diversity chemistry of solid surface in the same group.  相似文献   

4.
Chemisorption of 1,1-dichloroethene (Cl2CCH2) to a Si(1 1 1)-7 × 7 surface was studied by means of X-ray photoelectron spectroscopy using synchrotron radiation, recording chlorine 2p and carbon 1s spectra. For carbon 1s, spectral assignment of the chemisorbed species is based on quantum chemical calculations of chemical shifts in model compounds.The results confirm the identity of covalently bonded 1-chlorovinyl (-CClCH2) and vinylidene (CCH2) adspecies. Upon chemisorption at room temperature it was found that about one-third of the molecules break one C-Cl bond while about two-thirds of the adsorbates break two C-Cl bonds. We do not, however, find evidence for isomerization of CCH2 to di-bonded vinylene (-CHCH-).  相似文献   

5.
The possibilities of graphic STM image simulation of a clean Si(1 1 1) 7 × 7 surface at atomic level are indicated. The presented procedure takes into account various types of deformation on the surface near the Fermi level in order to classify them and explain their origin. It also gives a clear hint to insert relevant physical phenomena in a suggested analysis. This goal is achieved exploiting the results of DAS (dimmer adatom stacing fault) model by means of standard mathematical programmes. A clean Si(1 1 1) 7 × 7 surface is considered as the representative example, but similar evaluation is possible for another non-metal and metal surfaces.  相似文献   

6.
We present an ab initio study of methanol interaction with the Si(1 1 1)7 × 7 surface using a Si(1 1 1)4 × 2 model. The study of the methanol dissociation on Si(1 1 1)4 × 2 shows that pair dissociation on adatom-restatom dangling bonds is largely favoured, in agreement with the experimental observations. The “center” type adatom is slightly more reactive than the “corner” type one, although the difference is weak. Similar behaviour is observed in both adatom types. Our results for a direct CH3OH dissociation favouring a basic cleavage (adsorption of OH and CH3 fragments) rather than an acidic one (adsorption of H and OCH3 fragments), we are finally led to take a kinetic effect into consideration to reconcile theory with experiment. We show that the presence of molecular precursor states is possible. Different orientations with respect to the silicon dangling bonds of these molecular precursors are investigated. However, the corresponding energies are very close and, considering their relative energies, it is finally difficult to discriminate between acidic and basic cleavages.  相似文献   

7.
Results of an STM study of dissociative GeH4 adsorption on Si(1 1 1)-(7 × 7) at 300 K show that GeH4 adsorbs under scission of two Ge-H bonds according to GeH4(g) + 4db → GeH2(ad) + 2H(ad). GeH2 binds to two adatom dangling bonds in a bridged configuration, while the two released hydrogen atoms saturate two additional dangling bonds. The GeH4 sticking coefficient under these conditions is 1.2 × 10−6, one order of magnitude smaller than for SiH4.  相似文献   

8.
Zhenhua He 《Surface science》2006,600(3):514-526
The room-temperature adsorption and thermal evolution of iso-, cis- and trans-dichloroethylene (DCE) on Si(1 1 1)7 × 7 have been studied by vibrational electron energy loss spectroscopy and thermal desorption spectrometry (TDS). The presence of the Si-Cl stretch at 510 cm−1 suggests that, upon adsorption, all three isomers dissociate via C-Cl bond breakage on the 7 × 7 surface to form mono-σ bonded chlorovinyl , which could, in the case of iso-DCE, further dechlorinate to vinylidene (:CCH2) upon insertion into the back-bond. The higher saturation exposure for the Si-Cl stretch at 510 cm−1 observed for cis- and trans-DCE than iso-DCE suggests that Cl dissociation via the CHCl group in the cis and trans isomers is less readily than the CCl2 group in iso-DCE. Our TDS data show remarkable similarities in both molecular desorption near 360 K and thermal evolution of the respective adstructures for all three isomers on Si(1 1 1)7 × 7. In particular, upon annealing to 450 K, the mono-σ bonded chlorovinyl adspecies is found to further dechlorinate to either vinylene di-σ bonded to the Si surface or acetylene to be released from the surface. Above 580 K, vinylene could also become gaseous acetylene or undergo H abstraction to produce hydrocarbon or SiC fragments. All three DCE isomers also exhibit TDS features attributable to an etching product SiCl2 at 800-950 K and recombinative desorption products HCl at 700-900 K and H2 at 650-820 K. The stronger Cl-derived TDS signals and Si-Cl stretch at 510 cm−1 over 450-820 K for trans-DCE than those for cis-DCE indicate stronger dechlorination for trans-DCE than cis-DCE, which could be due to less steric hindrance resulting from the formation of the chlorovinyl adspecies for trans-DCE during the initial adsorption/dechlorination process. Finally, our density functional calculations qualitatively support the thermodynamic feasibility and relative stabilities of the proposed adstructures involving chlorovinyl, vinylidene, and vinylene adspecies.  相似文献   

9.
J.M.R. Muir  H. Idriss 《Surface science》2009,603(19):2986-2990
The reaction of formamide over the (0 1 1) faceted TiO2(0 0 1) surface has been studied by Temperature Programmed Desorption (TPD) and X-ray Photoelectron Spectroscopy (XPS). Two main reactions were observed: dehydration to HCN and H2O and decomposition to NH3 and CO. The dehydration reaction was found to be three to four times larger than the decomposition at all coverages. Each of these reactions is found to occur in two temperature domains which are dependent upon surface coverage. The low temperature pathway (at about 400 K) is largely insensitive to surface coverage while the high temperature pathway (at about 500 K) shifts to lower temperatures with increasing surface coverage. These two temperature pathways may indicate two adsorption modes of formamide: molecular (via an η1(O) mode of adsorption) and dissociative (via an η2(O,N) mode of adsorption). C1s and N1s XPS scans indicated the presence of multiple species after formamide absorption at 300 K. These occurred at ca. 288.5 eV (-CONH-) and 285 eV (sp3/sp2 C) for the C1s and 400 eV-(NH2), 398 eV (-NH) and 396 eV (N) for the N1s and result from further reaction of formamide with the surface.  相似文献   

10.
DFT calculations have been performed on the adsorption of NH3 on Ni(1 1 1) to obtain information on the structure of the absorbed species, the nature of the chemical interactions between the adsorbate and the surface and the structure of multilayers formed at high coverage. A cluster model, using localized basis functions as well as an approach based on plane waves and periodic boundary conditions have been considered. The two approaches lead to similar results for the relative stabilities of investigated adsorption sites (atop > fcc > hcp) with an adsorption energy of about 15-24 kcal/mol (depending on the coverage). On the atop site, α-ammonia adsorbs molecularly with an equilibrium distance between the nitrogen atom and the surface of 2.03 ± 0.02 Å and a geometry close to the one of the molecule in the gas phase. The good agreement between the two DFT approaches clearly underlines the local nature of the adsorption reaction. The vibrational frequencies computed for NH3 adsorbed in this site are in good agreement with experimental values. They show that the interaction with the surface leads to a weakening of the strength of the N-H bond while the angular stretching is stronger. Both orbital and topological analyses were used to investigate chemical interactions between the cluster and the molecule. The results strongly suggest an electrostatic (non-covalent) interaction between the substrate and the molecule. Calculations with NH3 coverages above 0.25 confirm that saturation occurs at a coverage of 0.25. Above the saturation coverage, ammonia molecules in excess form multiple layers (β and γ ammonia) bonded to the first layer by intermolecular hydrogen bonds. N 1s core level shifts calculations performed for the several investigated coverages are also in good agreement with experimental XPS data. It is shown that the H-bond network more than the bond to the surface allows to understand the N 1s core level variations.  相似文献   

11.
The intramolecular features of carbon 60 and carbon 84 molecules on Si(1 1 1)-7 × 7 surfaces were studied under a UHV-scanning tunneling microscope. Carbon molecules preferentially appear in faulted halves, rather than in unfaulted halves and corner holes; they are embedded in silicon substrates. The orientation and details of the structure of carbon molecules are determined by applying various sample biases to the silicon substrate. As compared with other fullerenes, a bright pentagonal ring with nebulous clusters which represents the cage structure is clearly observed on top of carbon 60 molecules. The bright stripes associated with partitioned curves which depict eight features of asymmetrical C84 molecules are also investigated on Si(1 1 1)-7 × 7 surfaces. The orientations and possible configurations of C60 and C84 are considered in this work. The energy differences for various features of C60 and C84 molecules are estimated and discussed. The corresponding models with respect to each intramolecular feature are proposed and compared with recent theoretical calculation.  相似文献   

12.
Metal atom on the Si(1 1 1)-7 × 7 surface undergoes migration by hopping among Si-adatom and Si-rest atom. If the hopping migration is prohibited, how change the deposited metals? In this paper, we studied the deposition of metals on the Si(1 1 1)-7 × 7 surface saturated with C2H5OH, on which the whole Si-rest atoms are changed to Si-H so that the hoping migration of metals will be prohibited. We found the growth of ca. 5 nm of crystalline dots by the deposition of Sn, Zn and Ag. Interestingly, Ag dots undergo layer-by-layer growth so that the surface is covered with 5 nm size dots with uniform height. When the hopping migration is prohibited, growth of dots is controlled by the kinetics of precursor state atoms instead of the lattice energy relating to lattice matching or strain.  相似文献   

13.
We have studied the adsorption structure of acetic anhydride on a TiO2(1 1 0) surface using XPS (X-ray photoelectron spectroscopy), LEED (low energy electron diffraction) and HREELS (high resolution electron energy loss spectroscopy) to determine the origins of the unique adsorption properties of carboxylic acids on a TiO2(1 1 0) surface. The C 1s XPS data indicated that the saturation carbon amount of adsorbed acetic anhydride was 12 ± 3% larger than that of the adsorbed acetic acid. LEED showed p(2 × 1) weak spots for the acetic anhydride adsorbed surface. The HREELS spectra revealed the dissociative adsorption of acetic anhydride. Based on these findings, we concluded that the neutralization of the bridging oxygen atoms associated with the dissociative adsorption is necessary for the stable adsorption of carboxylates on the 5-fold Ti sites.  相似文献   

14.
E. Vasco 《Surface science》2005,575(3):247-259
The surface relaxation mechanisms governing the preferential adsorption of metal atoms onto the faulted half-cells of a 7 × 7 reconstructed Si(1 1 1) surface are studied by rate equations and kinetic Monte Carlo simulations. The versatility of these mechanisms to control the formation of quasi-perfect 2D arrays of metal clusters is revealed via the optimization of the deposition/annealing conditions as a function of operating mechanisms, the Si(1 1 1)7 × 7 energy landscape, and the thermal stability of the created clusters. The influence on the formation process of such nanoarrays of the balance between kinetic limitations, which are especially relevant on Si(1 1 1)7 × 7, and thermodynamic tendencies is discussed.  相似文献   

15.
The decomposition of methanol on clean and oxygen-precovered CuCl(1 1 1) surface have been studied with the method of density functional theory-generalized gradient approximation (DFT-GGA) and the periodic slab models. The effects of different methanol coverages up to one monolayer are investigated. The activation of the O-H bond of methanol to form the methoxide intermediate, the activation of the C-H bond to form the hydroxymethyl intermediate and the activation of the C-O bond to form methyl are examined. These intermediates can subsequently react to form methoxide, hydroxymethyl, methyl, formaldehyde, formyl, and finally CO on the surface. The chemisorption energies of CH3OH, CH3O, H2COH, CH3, H2CO, HCO, OH and CO at their most favorable adsorption sites are predicted to be −57.9, −235.3, −172.9, −170.5, −67.8, −192.4, −309.5 and −105.7 kJ/mol, respectively. We also confirm that the O-H bond-breaking paths have lower energy barrier, compared to the C-O and C-H bond-breaking paths. However, these reactions need a lower energy barrier when precovered oxygen atoms participate in these reactions.  相似文献   

16.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves.  相似文献   

17.
X.J. Zhou 《Surface science》2006,600(16):3285-3296
The room temperature (RT) adsorption of 1,2-difluorobenzene (1,2-DFB), 1,2-dichlorobenzene (1,2-DCB) and 1,2-dibromobenzene (1,2-DBB) on Si(1 0 0)2 × 1 have been investigated by X-ray photoelectron spectroscopy (XPS) and temperature programmed desorption (TPD). Both XPS and TPD data show that the relative degree of dissociative to associative adsorption of the dihalogenated benzene (DXB) appears to increase with decreasing electronegativity of the halogen atom (X). In particular, the C 1s intensity ratios for the C-H and C-Si components to the C-X component are found to be 2, 3 and 9.6 for 1,2-DFB, 1,2-DCB and 1,2-DBB, respectively. These results indicate that 1,2-DFB, like benzene, exclusively adsorbs molecularly as a difluorocyclohexadiene adspecies on Si(1 0 0)2 × 1 while 1,2-DBB adsorbs predominantly with double debromination to form 1,2-phenylene. The majority of 1,2-DCB (75%) is found to adsorb molecularly, with the rest (25%) undergone single or double dechlorination to form chlorophenyl and phenylene, respectively. All three DXB molecules appear to have similar coverage as benzene. The two molecular desorption features for 1,2-DFB and 1,2-DCE are observed with desorption maxima at 460 K and 540 K similar to those found for benzene, which suggests that the dihalocyclohexadiene adstructures involve similar bonding through the benzene ring. In accord with the XPS data, no molecular desorption feature is observed for 1,2-DBB on the 2 × 1 surface. Further decomposition of the resulting phenylene adstructures is evident from the desorption fragment, C2H2, found at 610 K and 740 K. Recombinative desorption of HCl and HBr above 880 K are also found for 1,2-DCB and 1,2-DBB, respectively. The observed differences between associative and dissociative adsorption for the three DXB adsorbates could be attributed not only to the large difference in the C-X bond strength but also to the relative contributions from inductively withdrawing and resonantly donating electrons exerted by the halogen (X) atoms to the benzene ring.  相似文献   

18.
The covalent attachment of alkyl groups to silicon surfaces, via carbon-silicon bond formation, has been attempted using gas-surface reactions starting from Cl-terminated Si(1 1 1) or H:Si(1 1 1) under ultraviolet light irradiation. The formation of Cl-terminated Si(1 1 1) and its resulting stability were examined prior to deposition of organic molecules. High-resolution electron energy loss spectroscopy (HREELS) was utilized for detecting surface-bound adsorbates. The detection of photo-deposited organic species on Cl:Si(1 1 1) from gas-phase CH4 or CH2CH2 was not significant. On H:Si(1 1 1), it was evident that after the photoreaction with gas-phase C2H5Cl, C2H5 groups were chemically bonded to the surface Si atoms through single covalent bonds. The C2H5 groups were thermally stable at temperatures below 600 K. Alkyl monolayers prepared on silicon surfaces by dry process will lead to a new prospective technology of nanoscale fabrication and biochemical applications.  相似文献   

19.
The adsorption of NO molecule on the LaFeO3 (0 1 0) surface was studied using first-principle calculations based on density functional theory. The calculated results indicate that the Fe-top site is the most favorable for NO adsorption. The N-O bond length, Mulliken charge, and the N-O vibration frequency of the NO molecule are discussed after adsorption. The analysis results of the density of the states show that when NO is adsorbed with the Fe-NO configuration, the bonding mechanism is mainly from the interaction between the NO and the Fe d orbit.  相似文献   

20.
By means of density functional theory calculations we have investigated the role of adsorbed atomic oxygen and adsorbed OH in the oxidation of ammonia on Pt{1 1 1}. We have investigated the dissociation of NH3,ads, NH2,ads and NHads on Pt{1 1 1} and the oxidation of these species by Oads and OHads. We have done normal mode frequency analysis and work function calculations to characterise reactant, product and transition states. We have determined reaction energies, activation entropies, kinetic parameters and corrected total energies with the zero point energy. We have shown that Oads only activates the dehydrogenation of NH3,ads and that OHads activates the dehydrogenation of all NHx,ads species and have reasoned this difference in activation by a bond order conservation principle. We have pointed out the importance of a zero point energy correction to the reaction energies and barriers. We have compared the calculated vibrational modes of the adsorbates with corresponding experimental EELS data. This has led to a revise of the frequency assignment of ν(Pt-OH2), a revise in the identification of a NH2 species on the Pt{1 1 1} surface after electron bombardment of pre-adsorbed NH3 and the confirmation of an ammonia dimer binding model at the expense of a hollow site occupation by ammonia on the Pt{1 1 1} surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号