首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonic acid) composite thin films with prescribed concentrations of poly(ethylene glycol) were prepared. The PEDOT–PSS pristine film and PEDOT–PSS/PEG films were studied using four-probe method, photoelectron spectroscopy and atomic force microscopy. The electrical conductivity of PEDOT–PSS/PEG hybrid films was found to be enhanced compared to the PEDOT–PSS pristine film, depending on the PEG concentration and molecular weight. XPS analysis and AFM results showed that PEG induces the phase separation between the PEDOT–PSS conducting particles and the excessive PSSNa shell. Simultaneously PEG may form hydrogen bond with sulfonic groups of PSSH, and hence weaken the electrostatic interactions between PEDOT cationic chains and PSS anionic chains. These resulted in the creation of a better conduction pathway among PEDOT–PSS particles, attributed to the improvement of conductivity.  相似文献   

2.
The hydrophobic characteristics of PDMS and non-specific protein adsorption are major drawbacks for its application in biosensing. Here we have combined surface oxidation by plasma and chemical binding of polyvinyl alcohol (PVA) to obtain long-term stability of hydrophilic PDMS surfaces. Mercaptopropyltrimethoxisilane and aminopropyltrimethoxisilane were used as adhesives between the plasma-oxidized PDMS surface and the PVA, immobilized at room temperature. This approach has allowed for fast, uniform, and very stable modification of the PDMS surface, which maintained a hydrophilic character for as long as 30 days. In addition, the modified hydrophilic surface presented minimized protein adsorption when compared to pristine PDMS. The results obtained in this work are important contributions to the growing field of integrated microfluidic biosensors.  相似文献   

3.
We report the design and characterization of quartz surfaces that can bind to three retinal based chromophores. The amine terminated surfaces were engineered in order to mimic the environment of the opsin protein that accommodates binding of chromophore molecules in the human eye. Each surface coupling step was characterized by water contact angle measurements, ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, and transmission infrared spectroscopy. The spectroscopic techniques confirmed that the three chromophore molecules can bind to the surface using a Schiff base mode. Our data suggests that the availability of the amine groups on the surface is critical in the accommodation of the binding of different chromophores.  相似文献   

4.
We have investigated the morphology and surface electron states of LiBq4 deposited on ITO and CuPc/ITO, using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The AFM observations indicate that LiBq4 can form a much more uniform film on CuPc than that on ITO. Furthermore, X-ray photoelectron spectroscopy (XPS) is utilized to further demonstrate the AFM results. From the analysis of XPS, we found that LiBq4 molecules have poor thermal stability, they are seriously oxidized during depositing; but when a CuPc layer is inserted between LiBq4 and ITO film, the oxidation and surface contamination of LiBq4 are significantly reduced. It is then concluded that the introduction of a CuPc buffer layer under the LiBq4 film can improve the film quality of LiBq4.The XPS results also testified the fact that no coordination bonds between N atoms and B atoms are formed in LiBq4 molecules, which make LiBq4 to be potential blue organic light-emitting material.  相似文献   

5.
D. Abriou  J. Jupille   《Surface science》1999,430(1-3):L527-L532
Hydroxylated MgO surfaces have been prepared by exposure to water vapour of MgO crystals at room temperature. High hydroxyl coverages were achieved on freshly cleaved surfaces. However, upon adsorption–desorption cycles of the hydroxyl adlayer, the ability of the MgO surfaces to dissociate water was seen to be dramatically inhibited. Reduced reactivities have also been observed on both air- and water-exposed MgO surfaces. This reactive behaviour is discussed in relation to the theoretical prediction that the MgO(100) face is not expected to dissociate water molecules.  相似文献   

6.
A combined atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) study of tungsten oxide model catalysts is presented. The model catalysts were prepared by applying the real preparation method to a ZrO2(1 0 0) single crystal support. AFM imaged several granular structures of scattered dimensions on the surface of ZrO2(1 0 0) in the as prepared samples. After heating, at low loading the tungsten species rearranged into small WOx particles strongly interacting with the substrate. At high tungsten content large WO3 aggregates also formed. XPS analysis confirmed these changes. The estimated surface density of the interacting W-containing species closely matched that of real catalysts.  相似文献   

7.
K. Szot  W. Speier  U. Breuer  R. Meyer  J. Szade  R. Waser   《Surface science》2000,460(1-3):112-128
Droplet-like features and regularly shaped micro-crystals appear on the (100) surface of single-crystals of stoichiometric and doped SrTiO3 as a result of heat treatment around 1000–1100°C under ambient pressure. Secondary ion mass spectrometry, atomic force microscopy and X-ray photoemission are employed to characterize the morphology of the modified surface. The results provide evidence of an accumulation of SrOx on the surface in a liquid form and subsequent recrystallization as SrO on prolonged annealing. The phenomena are discussed in relation to the restructuring in the near-surface region and the loss of material at the temperatures employed, as evident from thermogravimetrical measurements.  相似文献   

8.
The dry etching of indium tin oxide (ITO) layers deposited on glass substrates was investigated in a high density inductively coupled plasma (ICP) source. This innovative low pressure plasma source uses a magnetic core in order to concentrate the electromagnetic energy on the plasma and thus provides for higher plasma density and better uniformity. Different gas mixtures were tested containing mainly hydrogen, argon and methane. In Ar/H2 mixtures and at constant bias voltage (−100 V), the etch rate shows a linear dependence with input power varying the same way as the ion density, which confirms the hypothesis that the etching process is mainly physical. In CH4/H2 mixtures, the etch rate goes through a maximum for 10% CH4 indicating a participation of the radicals to the etching process. However, the etch rate remains quite low with this type of gas mixture (around 10 nm/min) because the etching mechanism appears to be competing with a deposition process. With CH4/Ar mixtures, a similar feature appeared but the etch rate was much higher, reaching 130 nm/min at 10% of CH4 in Ar. The increase in etch rate with the addition of a small quantity of methane indicates that the physical etching process is enhanced by a chemical mechanism. The etching process was monitored by optical emission spectroscopy that appeared to be a valuable tool for endpoint detection.  相似文献   

9.
The adsorption and dissociation of NO on the Rh(110) surface were studied by synchrotron radiation X-ray photoemission spectroscopy at temperatures in the range 210–370 K. The O 1s or N 1s spectra were collected every 14 s while the surface was continuously exposed to a steady NO gas pressure. The difference in the binding energies for the atomic oxygen (O 1s ≤530.2 eV), atomic nitrogen (N 1s 397.2 eV) and molecular upright bonded NO molecules (O 1s ≥531.0 eV and N 1s 400 eV) allowed us to distinguish these surface species and to follow the evolution of the adsorbate layer. In addition to these dominating surface species a new species, characterized by O 1s binding energy of 530.7 eV and N 1s binding energy similar to that of the atomic nitrogen, was detected within a narrow coverage range. This state is tentatively assigned to a “lying down” NO bonding configuration, detectable at the timescale of the measurements. The uptake plots, constructed using the integrated intensity of the deconvoluted O 1s and N 1s spectra, are used to elucidate the effect of the reaction temperature and surface coverage and composition on the kinetics of dissociative and molecular NO adsorption of Rh(110).  相似文献   

10.
Surface preparation procedures for indium gallium nitride (InGaN) thin films were analyzed for their effectiveness for carbon and oxide removal as well as for the resulting surface roughness. Aqua regia (3:1 mixture of concentrated hydrochloric acid and concentrated nitric acid, AR), hydrofluoric acid (HF), hydrochloric acid (HCl), piranha solution (1:1 mixture of sulfuric acid and 30% H2O2) and 1:9 ammonium sulfide:tert-butanol were all used along with high temperature anneals to remove surface contamination. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) were utilized to study the extent of surface contamination and surface roughness, respectively. The ammonium sulfide treatment provided the best overall removal of oxygen and carbon. Annealing over 700 °C after a treatment showed an even further improvement in surface contamination removal. The piranha treatment resulted in the lowest residual carbon, while the ammonium sulfide treatment leads to the lowest residual oxygen. AFM data showed that all the treatments decreased the surface roughness (with respect to as-grown specimens) with HCl, HF, (NH4)2S and RCA procedures giving the best RMS values (∼0.5-0.8 nm).  相似文献   

11.
12.
Although metallic biomaterials are widely used, systematic studies of protein adsorption onto such materials are generally lacking. Combinatorial binary films of Al1−xTix and Al1−xNbx (0  x  1) and corresponding pure element films were produced on glass substrates using a unique magnetron sputtering technique. Fibrinogen and albumin adsorption amounts were measured by wavelength-dispersive spectroscopy (WDS) and spectroscopic ellipsometry (SE) equipment, both high throughput techniques with automated motion stage capabilities. X-ray diffraction revealed that the binary films have crystalline phases present near the ends of the compositional gradient with an amorphous region throughout the interior of the gradient. X-ray photoelectron spectroscopy provided the surface chemistry along the binary films and showed that Al2O3 preferentially formed at the surface. Protein adsorption onto these films was found to be closely correlated to the alumina surface fraction, with high alumina content at the surface leading to low amounts of adsorbed fibrinogen and albumin. Protein adsorption amounts obtained with WDS and SE were in excellent agreement for all films. This suggests that this combinatorial materials approach combined with these state-of-the-art, automated high throughput instruments provides a novel way to accurately monitor protein adsorption taking place at the surfaces of these metal/metal oxide materials.  相似文献   

13.
Surface-confined telechelic poly(ε-caprolactone) macroligand with two distinct functional groups per polymeric chain has been synthesized and characterized. The molecular microstructure of the macroligand with regard to the properties of the end-capped functionalities and with those on surface substrate has been studied by solution and surface analytical methods (i.e., X-ray photoelectron spectroscopy (XPS), grazing angle reflectance-Fourier transform IR spectroscopy (GA-FTIR), water contact angle measurements, and atomic force microscopy (AFM)) to elucidate the structure and properties of such multifunctional polymer on gold (1 1 1) substrate.  相似文献   

14.
A superior, easy and single-step titanium (Ti) powder assisted surface pretreatment process is demonstrated to enhance the diamond nucleation density of ultrananocrystalline diamond (UNCD) films. It is suggested that the Ti fragments attach to silicon (Si) surface form bond with carbon at a faster rate and therefore facilitates the diamond nucleation. The formation of smaller diamond clusters with higher nucleation density on Ti mixed nanodiamond powder pretreated Si substrate is found to be the main reason for smooth UNCD film surface in comparison to the conventional surface pretreatment by only nanodiamond powder ultrasonic process. The X-ray photoelectron spectroscopic study ascertains the absence of SiC on the Si surface, which suggests that the pits, defects and Ti fragments on the Si surface are the nucleation centers to diamond crystal formation. The glancing-incidence X-ray diffraction measurements from 100 nm thick UNCD films evidently show reflections from diamond crystal planes, suggesting it to be an alternative powerful technique to identify diamond phase of UNCD thin films in the absence of ultra-violet Raman spectroscopy, near-edge X-ray absorption fine structure and transmission electron microscopy techniques.  相似文献   

15.
Surface area effect of carbon source on the carbothermal reduction for the fabrication of ZnO nanostructure was investigated. For a systematic comparison, graphite and three kinds of carbon black powder were used as source materials for the carbothermal reduction. Depending on the surface area, the carbothermal reduction at 800 °C for 30 min resulted in Zn-silicate island or ZnO nanorod at the same experimental condition. These structures were characterized with a scanning electron microscopy, a transmission electron microscopy, an energy dispersive spectroscopy and an X-ray photoelectron spectroscopy. The results show that the reducing power of ZnO(s) source into Zn(g) vapor is strongly dependent on the surface area of carbon source, and that the fabrication of ZnO nanostructure can be performed more efficiently by using carbon source with large surface area.  相似文献   

16.
Porous GaAs layers were formed by electrochemical etching of p-type GaAs(1 0 0) substrates in HF solution. A surface characterization has been performed on p-type GaAs samples using X-ray photoelectron spectroscopy (XPS) technique in order to get information about the chemical composition, particularly on the surface contamination. According to the XPS spectra, the oxide layer on as-received porous GaAs substrates contains As2O3, As2O5 and Ga2O3. Large amount of oxygen is present at the surface before the surface cleaning.Compared to untreated GaAs surface, room temperature photoluminescence (PL) investigations of the porous layers reveal the presence of two PL bands: a PL peak at ∼871 nm and a “visible” PL peak at ∼650-680 nm. Both peak wavelengths and intensities varied from sample to sample depending on the treatment that the samples have undergone. The short PL wavelength at 650-680 nm of the porous layers is attributed to quantum confinement effects in GaAs nano-crystallites. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-sized crystallites were observed on the porous GaAs surface. An estimation of the mean size of the GaAs nano-crystals obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results.  相似文献   

17.
Ge (1 0 0) wafers were implanted with 100 keV Mn+ ions with a dose of 2 × 1016 ions/cm2 at different temperatures, ranging from 300 to 573 K. The surface morphology of implanted samples, analyzed with scanning electron microscopy and atomic force microscopy measurements, reveals for the 300-463 K implant temperature range the formation of a surface swelled and porous film, containing sponge-like structures. On the contrary, samples implanted in the 513-573 K temperature range present an atomically flat surface, with a roughness less than 1 nm, indicating that crystalline order has been preserved. X-ray photoemission spectroscopy depth profiling measurements indicate the presence of adsorbed oxygen in the porous layer of lower-temperature implanted samples, as well the presence of a large Mn concentration below the expected end of range for impinging ions. Mn and O concentrations at anomalously great depths are maximum in the 413 K implanted sample, indicating that the phenomenon of ion beam induced porosity is best favored at a well defined temperature.  相似文献   

18.
In this work, low-pressure air plasma has been used to improve polyethylene terephthalate (PET) surface properties for technical applications. Surface free energy values have been estimated using contact angle value for different exposure times and different test liquids. Surface composition and morphology of the films were analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Surface topography changes related with the etching mechanism have been followed by weight loss study. The results show a considerable improvement in surface wettability and the surface free energy values even for short exposure times in the different discharge areas (discharge area, afterglow area and remote area), as observed by a remarkable decrease in contact angle values. Change of chemical composition made the polymer surfaces to be highly hydrophilic, which mainly depends on the increase in oxygen-containing groups. In addition to, the surface activation and AFM analyses show obvious changes in surface topography as a consequence of the plasma-etching mechanism.  相似文献   

19.
Molecular electroactive monolayers have been produced from vinylferrocene (VFC) via light-assisted surface anchoring to H-terminated n- and p-Si(1 0 0) wafers prepared via wet chemistry, in a controlled atmosphere. The resulting Si-C bound hybrids have been characterized by means of XPS and AFM. Their performance as semiconductor functionalized electrodes and their surface composition have been followed by combining electrochemical and XPS measurements on the same samples, before and after use in an electrochemical cell. White-light photoactivated anchoring at short (1 h) exposure times has resulted in a mild route, with a very limited impact on the initial quality of the silicon substrate. In fact, the functionalized Si surface results negligibly oxidized, and the C/Fe atomic ratio is close to the value expected for the pure molecular species. The VFC/Si hybrids can be described as (η5-C5H5)Fe2+(η5-C5H4)-CH2-CH2-Si species, on the basis of XPS results. Electrochemical methods have been applied in order to investigate the role played by a robust, covalent Si-C anchoring mode towards substrate-molecule electronic communication, a crucial issue for a perspective development of molecular electronics devices. The response found from cyclic voltammograms for p-Si(1 0 0) functionalized electrodes, run in the dark and under illumination, has shown that the electron transfer is not limited by the number of charge carriers, confirming the occurrence of electron transfer via the Si valence band. The hybrids have shown a noticeable electrochemical stability and reversibility under cyclic voltammetry (cv), and the trend in peak current intensity vs. the scan rate was linear. The molecule-Si bond is preserved even after thousands of voltammetric cycles, although the surface coverage, evaluated from cv and XPS, decreases in the same sequence. An increasingly larger surface concentration of Fe3+ at the expenses of Fe2+ redox centers has been found at increasing number of cv’s, experimentally associated with the growth of silicon oxide. Surface SiO groups from deprotonated silanol termination, induced by the electrochemical treatments, are proposed as the associated counterions for the Fe3+ species. They could be responsible for the observed decrease in the electron transfer rate constant with electrode ageing.  相似文献   

20.
The adsorption of CO and the reaction of CO with pre-adsorbed oxygen at room temperature has been studied on the (2 × 1)ORh(1 1 1) surface and on vanadium oxideRh(1 1 1) “inverse model catalyst” surfaces using scanning tunnelling microscopy (STM) and core-level photoemission with synchrotron radiation. Two types of structurally well-defined model catalyst V3O9Rh(1 1 1) surfaces have been prepared, which consist of large (mean size of 50 nm, type I model catalyst) and small (mean size <15 nm, type II model catalyst) two-dimensional oxide islands and bare Rh areas in between; the latter are covered by chemisorbed oxygen. Adsorption of CO on the oxygen pre-covered (2 × 1)ORh(1 1 1) surface leads to fast CO uptake in on-top sites and to the removal of half (0.25 ML) of the initial oxygen coverage by an oxidation clean-off reaction and as a result to the formation of a coadsorbed (2 × 2)O + CO phase. Further removal of the adsorbed O with CO is kinetically hindered at room temperature. A similar kinetic behaviour has been found also for the CO adsorption and oxidation reaction on the type I “inverse model catalyst” surface. In contrast, on the type II inverse catalyst surface, containing small V-oxide islands, the rate of removal of the chemisorbed oxygen is significantly enhanced. In addition, a reduction of the V-oxide islands at their perimeter by CO has been observed, which is suggested to be the reason for the promotion of the CO oxidation reaction near the metal-oxide phase boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号