首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A high-resolution angle-resolved photoemission spectroscopy (ARPES) study of Fe(1 1 0) single crystal was conducted to elucidate many-body interactions between quasi-particles at the Fermi level at low-temperature. Two kink structures were observed in the energy-band dispersion at the binding energies of ∼40 meV and ∼270 meV for the bulk-derived band on the majority-spin Fermi surface around the Γ point. Based on analyses of the experimentally obtained real parts of the self-energy, these kink structures are derived from electron-phonon and electron-magnon interactions.  相似文献   

2.
We have performed an angle resolved photoemission spectroscopy with high energy and high momentum resolutions and have observed the k dependent energy dispersion curves of the striped Cu(1 1 0)(2 × 1)O surface. It is found that the Shockley surface state electron is confined in the clean surface along the perpendicular direction to the stripes and forms a quantum well state (QWS). It has also been clearly observed that an electron of Cu-O antibonding state is confined within the oxygen covered surface.  相似文献   

3.
Water adsorbed on Ni(1 1 1) forms an ordered, hydrogen bonded ice structure with a (2√7 × 2√7)R19° unit cell. The 2√7 wetting structure forms as islands and persists up to saturation of the first layer. Adsorption of a fraction of a monolayer more water into a second layer destroys the 2√7 registry and creates a disordered ice film. Gas adsorption measurements indicate that the wetting layer is completely covered by a second layer of water before thicker multilayer ice forms. As the second layer is completed the film orders to form an incommensurate crystalline ice film with a hexagonal LEED pattern, oriented to the Ni close packed rows. This ordered, incommensurate structure persists as the ice multilayer grows thicker.  相似文献   

4.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other.  相似文献   

5.
Zhipeng Chang 《Surface science》2007,601(9):2005-2011
Methanethiol adsorbed on Ru(0 0 0 1)-p(2 × 2)O has been studied by TPD and XPS. The dissociation of methanethiol to methylthiolate and hydrogen at 90 K is evidenced by the observation of hydroxyl and water. The saturation coverage of methylthiolate is ∼0.15 ML, measured by both XPS and TPD. A detailed analysis suggests that only the hcp-hollow sites have been occupied. Upon annealing the surface, water and hydroxyl desorb from the surface at ∼210 K. Methylthiolate decomposes to methyl radical and atomic sulphur via C-S cleavage between 350 and 450 K. Some methyl radicals (0.05 ML) have been transferred to Ru atoms before they decompose to carbon and hydrogen. The rest of methyl radicals desorb as gaseous phase. No evidence for the transfer of methyl radical to surface oxygen has been found.  相似文献   

6.
Scanning tunneling microscopy (STM) has been used to study the various possible structures of adsorbed Bi on the Cu(1 0 0) surface, after equilibration at a temperature of 520 K. All of the structures previously identified by X-ray diffraction (lattice gas, c(2 × 2), c(9√2 × √2)R45°, and p(10 × 10), in order of increasing Bi-coverage) were found to be present on a single sample produced by diffusing Bi onto the Cu(1 0 0) surface from a 3-d source. By investigating the possible coexistence of various pairs of phases, it was demonstrated that the c(2 × 2) phase transforms to the c(9√2 × √2)R45° phase by a first order transition, whereas the transition from c(9√2 × √2)R45° to p(10 × 10) is continuous. In addition, the structure of surface steps was studied as a function of Bi-coverage. The results showed that the presence of Bi changes the nature of the step-step interactions at the Cu(1 0 0) surface from repulsive to attractive. The attractive step-step interactions transform any small deviations from the nominal (1 0 0) orientation of the Cu substrate into (3 1 0) microfacets. When compared with the known equilibrium crystal shape (ECS) of Bi-saturated Cu, the observed microfaceting may imply that the ECS of Cu-Bi alloys is temperature dependent.  相似文献   

7.
The surface structure of Si(1 1 1)-6 × 1-Ag was investigated using surface X-ray diffraction techniques. By analyzing the CTR scattering intensities along 00 rod, the positions of the Ag and reconstructed Si atoms perpendicular to the surface were determined. The results agreed well with the HCC model proposed for a 3 × 1 structure induced by alkali-metals on a Si(1 1 1) substrate. The heights of the surface Ag and Si atoms did not move when the surface structure changed from Si(1 1 1)-√3 × √3-Ag to Si(1 1 1)-6 × 1-Ag by the desorption of the Ag atoms. From the GIXD measurement, the in-plane arrangement of the surface Ag atoms was determined. The results indicate that the Ag atoms move large distances at the phase transition between the 6 × 1 and 3 × 1 structures.  相似文献   

8.
Enhancement of surface state peaks in angle resolved ultraviolet photoelectron spectra (ARUPS) from the Al(1 1 1) surface is studied experimentally and theoretically within the one-step model of photoemission. The resonant enhancement of the surface state emission is explained by the crucial role of elastic scattering of the outgoing electron. Dipole transitions to evanescent states in the final bands of the crystal are shown to determine photoemission at the resonant photon energy. The band structure based explanation is confirmed by the measurements of electron reflectivity and of the fine structure of valence band spectra. The surface sensitivity of ARUPS is shown to depend strongly on the complex band structure of the crystal and to be finely tunable by the choice of photoemitted electron energy.  相似文献   

9.
The surface structure of BaO(1 1 1) has been determined using STM and computer modelling. The BaO(1 1 1) surface was prepared in thin film form on Pt(1 1 1) and presents a surface with twice the lattice parameter expected for that of the bulk termination, i.e. a (2 × 2) reconstruction. Computer modelling indicates that the bulk termination is unstable, but that the (2 × 2) reconstructed BaO(1 1 1) surface has a low surface energy and is hence a stable surface reconstruction. The (2 × 2) reconstruction consists of small, three-sided pyramids with (1 0 0) oriented sides and either oxygen or barium ions at the apices. Less regular surface reconstructions containing the same pyramids are almost equally stable, indicating that we may also expect less regular regions to appear with a fairly random distribution of these surface species. The simulations further suggest that a regular (4 × 4) reconstruction built up of bigger pyramids is even more energetically favourable, and some evidence is found for such a structure in the STM.  相似文献   

10.
The adsorption properties of CO on the epitaxial five-monolayer Co/Cu(1 0 0) system, where the Co overlayer has stabilized in the metastable fcc-phase, are reported. This system is known to exhibit metallic quantum well (MQW) states at energies 1 eV or greater above the Fermi level, which may influence CO adsorption. The CO/fcc-Co/Cu(1 0 0) system was explored with low energy electron diffraction (LEED), inverse photoemission (IPE), reflection-absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD). Upon CO adsorption, a new feature is observed in IPE at 4.4 eV above EF and is interpreted as the CO 2π level. When adsorbed at room temperature, TPD exhibits a CO desorption peak at ∼355 K, while low temperature adsorption reveals additional binding configurations with TPD features at ∼220 K and ∼265 K. These TPD peak temperatures are correlated with different C-O stretch vibrational frequencies observed in the IR spectra. The adsorption properties of this surface are compared to those of the surfaces of single crystal hcp-Co, as well as other metastable thin film systems.  相似文献   

11.
S.H. Xu  Z.H. He 《Applied Surface Science》2007,253(23):9221-9227
The room temperature (RT) adsorption and thermal evolution of cis- and trans-dichloroethylene (DCE) and their structural isomer, iso-DCE, on Ni(1 0 0) have been studied by vibrational electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES) and thermal desorption spectrometry (TDS). For RT adsorption, both cis- and trans-DCE exhibit very similar EELS features that are different from those found for iso-DCE. These differences indicate the formation of different fragments upon RT adsorption. In particular, the primary adspecies for cis- and trans-DCE are ethane-1,1,2,2-tetrayl () and acetylide-like () adspecies along with a small amount of chlorovinyl adspecies, while ethylylidyne () is the more plausible adspecies for iso-DCE. The differences in the adstructures upon dissociative adsorption at RT underline the important isomeric effects. Furthermore, both AES and TDS results for all three DCE isomers show that most of the Cl atoms produced by dechlorination remain on the surface and its surface concentration remains unchanged upon annealing the samples above 500 K. Upon further annealing to 550 K, the EELS spectra of all three isomers exhibit a broad feature near 1600 cm−1, which suggests the formation of carbon clusters on the surface. The presence of surface Cl atoms therefore appears to prevent the CC bond cleavage during thermal evolution of the adspecies on Ni(1 0 0).  相似文献   

12.
We present a comprehensive picture of structural and electronic properties of the TiC(0 0 1)(1 × 1) surface. Our investigations are based on first-principles calculations within the local-density approximation of the density-functional theory. Good agreement has been observed between our calculation and experimental data for the atomic geometry of the surface. In particular, the calculated bond lengths between the first-layer C and the second-layer Ti (d1C-2Ti = 2.188 Å) and between the first-layer Ti and the second-layer C (d1Ti-2C = 2.031 Å) are in good agreement with the corresponding experimental values of 2.25 Å and 2.14 Å, respectively. We have also identified surface electronic states and provided clear support for previously available photoemission measurements. We have further calculated surface phonon modes at the zone centre and at the zone-edge point X using a linear response scheme based on the ab initio pseudopotential method. Our calculated surface phonon results are in excellent agreement with electron energy loss spectroscopy results.  相似文献   

13.
The c(4 × 2) structures in (0 0 1) surfaces of Si and Ge have been studied by low-energy electron diffraction (LEED). Using a proper cleaning method for the Si surface, we were able to observe clear c(4 × 2) LEED patterns up to incident energy of ∼400 eV as well as the Ge surface. Extensive experimental intensity-voltage curves allowed us to optimize the asymmetric dimer model up to the eighth layer (including the dimer layer) in depth in the dynamical LEED calculation. Optimized structural parameters are almost the same for the Si and Ge except for the height of the buckled-up atom of the asymmetric dimer. For the Ge surface, the structural parameters are in excellent agreement with those obtained by a previous theoretical calculation. The tilt angle and bond length of the dimer are 18 ± 1 (19 ± 1)° and 2.4 ± 0.1 (2.5 ± 0.1) Å for the Si(0 0 1) (Ge(0 0 1)), respectively.  相似文献   

14.
The formation of doubly excited states of He atoms during collisions of He2+ ions with energies between 60 eV and 1 keV with a Ni(1 1 0) surface is studied via Auger electron spectroscopy. We observe that the electron spectra from autoionization of doubly excited states of 2s2, 2s2p, 2p2 configurations show a pronounced dependence on the coverage of the target surface with oxygen. For a controlled O2 adsorption on the Ni(1 1 0) surface we can explain the resulting changes in the electron spectra by the modification of the work function of the target surface. Thermal desorption and dissolution into the bulk of surface contaminations at elevated temperatures provides an alternative interpretation of recent work where the local electron spin polarization of a Ni(1 1 0) surface was deduced from changes in the electron spectra as function of target temperature.  相似文献   

15.
We have investigated the temperature dependence of angle resolved photoelectron spectroscopy for the lateral quantum well states (QWS) on the striped Cu(1 1 0)(2 × 1)O surface. For the striped surface with oxygen coverage of 0.25 ML, we have successfully observed two discrete levels along a perpendicular direction to the stripes in the surface Brillouin zone, which is generated by quantization of the Shockley surface state. We have found that the relative photoelectron intensity of the two discrete levels depends on the temperature. The photoelectron intensity tends to concentrate on the ground level of the QWS with decreasing temperature. Our investigation indicates that the electron population of each quantum well level depends on the temperature.  相似文献   

16.
CO and O2 co-adsorption and the catalytic oxidation of CO on a Pt(1 1 0) surface under various pressures of CO and O2 (up to 250 mTorr) are studied using ambient pressure X-ray photoelectron spectroscopy (APXPS) and mass spectrometry. There is no surface oxide formation on Pt under our reaction conditions. CO oxidation in this pressure (<500 mTorr), O2 to CO ratio (<10), and temperature (150 °C) regime is consistent with the Langmuir-Hinshelwood reaction mechanism. Our findings provide in-situ surface chemical composition data of the catalytic oxidation of CO on Pt(1 1 0) at total pressures below 1 Torr.  相似文献   

17.
In the present work the ASED-MO method is applied to study the adsorption of cyclopentadienyl anion on a Ni(1 1 1) surface. The adsorption with the centre of the aromatic ring placed above the hollow position has been identified to be energetically the most favourable. The aromatic ring remains almost flat, the H atoms are tilted 17° away from the metal surface. We modelled the metal surface by a two-dimensional slab of finite thickness, with an overlayer of c-C5H5, one c-C5H5 per nine surface Ni atoms. The c-C5H5 molecule is attached to the surface with its five C atoms bonding mainly with three Ni atoms. The NiNi bond in the underlying surface and the CC bonds of c-C5H5 are weakened upon adsorption. We found that the band of Ni 5dz2 orbitals plays an important role in the bonding between c-C5H5 and the surface, as do the Ni 6s and 6pz bands.  相似文献   

18.
Structure and energy related properties of neutral and charged vacancies on relaxed diamond (1 0 0) (2 × 1) surface were investigated by means of density functional theory. Calculations indicate that the diffusion of a single vacancy from the top surface layer to the second layer is not energetically favored. Analysis of energies in charged system shows that neutral state is most stable on diamond (1 0 0) (2 × 1) surface. The multiplicity of possible states can exist on diamond (1 0 0) surface in dependence on the surface Fermi level, which supports that surface diffusion of a vacancy is mediated by the change of vacancy charge states. Analysis of density of states shows surface vacancy can be effectively measured by photoelectricity technology.  相似文献   

19.
Angle-resolved photoemission spectroscopy (ARPES) and resonant photoemission spectroscopy (RPES) have been used to study the electronic structure of the ZrO-like film formed on a ZrC(1 0 0) surface. It is found that, in addition to the O 2p band observed at 6-8 eV, states exist at 0.15 and 0.75 eV around the point. ARPES measurements show that the states at 0.15 and 0.75 eV disperse towards the lower binding energy side and cross the Fermi level along the direction. RPES measurements show that the former state shows a resonant behavior characteristic of the intra-atomic Zr 4d resonance, suggesting that the state includes substantial contribution of Zr 4d orbitals. On the other hand, the latter state shows a resonant behavior similar to that of the O 2p state in ZrO. The resonance is thought to be caused through the inter-atomic deexcitation mechanism involving the emissions of O 2p electrons, and thus the latter state is ascribed to that mostly composed of the O 2p component.  相似文献   

20.
The modification of the Au(1 1 1) Shockley-type surface state by an adsorbed monolayer of large π-conjugated molecules was investigated by high-resolution angle-resolved photoelectron spectroscopy (ARPES). We determined binding energy, band mass, and Rashba-splitting and discuss the results in the context of rare-gas adsorption on noble metals. This comparison allows the determination of the bonding strength of the adsorbates, found to be physisorptive with derived binding energies per molecule of 2.0 eV for perylene-tetracarboxylic-dianhydride (PTCDA) and 1.5 eV for naphtalene-tetracarboxylic-dianhydride (NTCDA). We will also present a superstructure model for the NTCDA/Au(1 1 1) system, deduced from low energy electron diffraction images (LEED) in combination with substrate band-backfolding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号