首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The electronic structure of the InSe/Pt interface has been studied by angle-resolved and X-ray photoemission measurements. From these results, it has been found that Pt incorporates into the InSe lattice at initial stages of Pt deposition, acting as a surface acceptor-like which tends to turn the interface into intrinsic. Beyond certain Pt submonolayer coverage, the band-bending process appears to be controlled by localized states appearing close to the Fermi level. The appearance of these states has been attributed to a reaction-like mechanism between diffused Pt and InSe atoms. For this interface, it has been found that a final electronic barrier of ∼1.2 eV is formed, close to that expected for an abrupt InSe/Pt Schottky barrier. Nevertheless, the atomic structure of the interface is far from that expected for an ideal Schottky interface.  相似文献   

2.
Auger Electron Spectroscopy (AES), Low Energy Electron Diffraction (LEED) and Photoelectron Yield Spectroscopy (PYS) measurements have been used to monitor the interaction of gold (Au) deposits on InSe/Si(1 1 1) substrate. Au has been sequentially deposed under ultra-high vacuum onto 40 Å-thick film of layered semiconductor InSe which is epitaxially grown by molecular beam epitaxy (MBE) on a Si(1 1 1)1 × 1-H substrate and kept at room temperature. Au coverage varies from 0.5 monolayer to 20 monolayers (ML) (in terms of InSe atomic surface plane: 1 ML = 7.2 1014 at/cm2) which is corresponding to 1.30 Å of Au-metal. The Au/InSe/Si(1 1 1) system was characterized as function of Au deposit, we noticed an interaction at room temperature starts as an apparent intercalation process until 5 ML. Beyond this dose Au islands begin to form on the sample surface without interaction with InSe substrate, thus the interface is far from to be a simple junction Au-InSe.  相似文献   

3.
4.
The adsorption of Pd, Ag and Au atoms on a porous silica film on Mo(1 1 2) is investigated by scanning tunneling microscopy and density functional theory. While Pd atoms are able to penetrate the holes in the silica top-layer with virtually no barrier, Ag atoms experience an intermediate barrier value and Au atoms are completely unable to pass the oxide surface. The penetration probability does not correlate with the effective size of the atoms, but depends on their electronic structure. Whereas Pd with an unoccupied valence s-orbital has a low penetration barrier, Ag and Au atoms with occupied s-states experience a substantial repulsion with the filled oxide states, leading to a higher barrier for penetration. In the case of Ag, the barrier height can be temporally lowered by promoting the Ag 5s-electron into the support. The Mo-supported silica film can thus be considered as a primitive form of an atomic sieve whose selectivity is controlled by the electronic structure of the adatoms.  相似文献   

5.
Xueying Zhao 《Surface science》2006,600(10):2113-2121
The adsorption of glycine on Au(1 1 1) pre-deposited with different amounts of Cu was investigated with both conventional X-ray photoelectron spectroscopy (XPS) and synchrotron-based photoemission. In the Cu submonolayer range, glycine physically adsorbs on the Cu/Au(1 1 1) surfaces in its zwitterionic form and completely desorbs at 350 K. The C 1s, O 1s and N 1s core level binding energies monotonically increase with Cu coverage. This indicates that, in the Cu submonolayer range, the admetal is alloyed with Au rather than forming overlayers on the Au(1 1 1) substrate, consistent with our recent experimental and theoretical results [X. Zhao, P. Liu, J. Hrbek, J.A. Rodriguez, M. Pérez, Surf. Sci. 592 (2005) 25]. Upon increasing the amount of deposited Cu over 1 ML, part of the glycine overlayer transforms from the zwitterionic form to the anionic form (NH2CH2COO) and adsorbs chemically on the Cu/Au(1 1 1) surface with the N 1s binding energy shifted by −2.3 eV. When the amount of deposited Cu is at 3.0 or 6.0 ML, the intensity of the N 1s chemisorption peak increases with aging time at 300 K. It indicates that glycine adsorption induces Cu segregation from the subsurface region onto the top layer of the substrate. Judging from the initial N 1s peak intensities, it is concluded that 64% and 36% of the top layer are still occupied by Au atoms before glycine adsorption even when the amounts of deposited Cu are 3.0 and 6.0 ML, respectively. On the Au(1 1 1) surface pre-dosed with 6.0 ML of Cu, part of the chemisorbed glycine will desorb and part will decompose upon heating to 450-500 K. In addition, about 20% of the glycine exists in the neutral form when the glycine overlayer was dosed on Cu/Au(1 1 1) held at 100 K.  相似文献   

6.
The epitaxial growth of Pd adlayers electrochemically deposited onto Au(1 0 0) has been studied by LEED, RHEED and AES. For the first 6 ML, the Pd deposits grow pseudomorphically on Au(1 0 0) with a lateral expansion of 4.5% with respect to bulk Pd. The strain in the expanded commensurate (1 × 1) Pd layers on Au(1 0 0) begins to be relieved at the Pd coverage between 6 and 9 ML range by formation of a compressed Pd film with respect to Au(1 0 0) surface and the compression increases continuously with thickness. At ca. 20 ML Pd the lattice constant of the film approaches to the bulk Pd and three-dimensional Pd islands develop since around 30 ML coverage. No superstructure due to the Pd-Au surface alloy can be found for coverages from monolayer up to 30 ML Pd on Au(1 0 0). A c(2 × 2) phase has been observed on the Pd-deposited Au(1 0 0) electrodes, which is ascribed to an ordered Cl adlayers adsorbed on Pd adlayers rather than a Pd-Au surface alloy.  相似文献   

7.
The growth and the electronic properties of Ba ultra-thin films (coverage ≤ 2 ML) on the SrTiO3(1 0 0) surface was studied using synchrotron radiation facilities. The investigation was carried out mainly by soft X-ray photoelectron spectroscopy measurements at low core levels and the valence band region. The results show that the Ba overlayer develops in a layer-by-layer mode. The first two layers do not create any states in the band gap, thus leaving intact the insulating character of the substrate. This is due to the oxidation of Ba through transfer of O2− anions from the substrate into the Ba overlayer. It is observed that the valency of the Ti atoms at the interface does not change. This is attributed to an outwards diffusion of O2− anions from deeper layers promoted by substrate annealing. Within the coverage examined, no evidence for Ba metallization is found, contrary to what happens on metallic substrates. Comparing the results of this work with previous ones on similar metal–SrTiO3(1 0 0) adsorption systems, it is concluded that a single factor such as charge transfer or thermodynamic stability is not always sufficient to determine the oxidation process of the adsorbate layer. Kinetics on surfaces as well as substrate doping and defects can also play a decisive role.  相似文献   

8.
9.
The use of cryogenic temperatures (∼77 K) during Au Schottky contact deposition onto n-GaAs produces an increase in barrier height from 0.73 eV for room temperature diodes to 0.82 eV. Not all Schottky metals show this enhancement—for example Pt and Ti do not show any significant change in barrier height whereas Au, Pd and Ni show increases between 7 and 18%. We used X-ray reflectivity to show that the main difference between Au deposited at 77 K and room temperature is a decreased metal roughness while the interfacial roughness between the Au and GaAs is basically the same. As the diodes are annealed to 300 °C both the difference in barrier height and interfacial roughness is lost. This is a simple method with potential for improving the performance of GaAs metal-semiconductor-field-effect-transistors (MESFETs).  相似文献   

10.
The Schottky junction formation by the stepwise evaporation of gold and copper, respectively, onto methyl-terminated silicon, CH3-Si(1 1 1), was investigated by synchrotron X-ray photoelectron spectroscopy. During the junction formation process, interface reactions occurred as revealed by the appearance of chemically shifted Si 2p components. Upon deposition of Au, the formation of about one monolayer of gold silicide, SiAu3, with a Si 2p chemical shift of +0.75(2) eV, was observed. The SiAu3 floated on top of the growing gold layer. Similarly, for the deposition of Cu, the methyl termination layer was partially disrupted, as indicated by the appearance of a −0.28(2) eV chemically shifted Si 2p component attributable to an interfacial copper silicide phase, SiCu3. Hence, the termination of the Si(1 1 1) surface by methyl groups did not completely prevent interfacial reactions, but did reduce the amount interfacial reaction products as compared to bare Si(1 1 1)-(7 × 7) surfaces.Electron Schottky barrier heights of 0.78(8) eV (Au) and 0.61(8) eV (Cu) were measured. Within the experimental uncertainty the observed Schottky barriers were identical to those ones obtained on non-passivated, (7 × 7)-reconstructed Si(1 1 1) surfaces. Thus, the modification of the electronic properties of the silicon-metal contact requires the complete absence of interfacial reactions.  相似文献   

11.
We have measured W 4f7/2 core-level photoemission spectra from W(1 1 0) in the presence of Pd overlayers for coverages up to ∼1 pseudomorphic monolayer (ML). At coverages close to 0.05 ML a striking change in the W core-level spectrum is observed, which we interpret as indicating a long-range lateral effect of 2D Pd islands upon the W electronic structure in both the first and second W layers. As the coverage increases the long-range effect weakens and finally vanishes near 0.85 ML. Above this coverage the W spectra are typical for a W-based bimetallic interface, with the first-layer W atoms exhibiting a small interfacial core-level shift (−95 ± 5 meV) compared to the bulk atoms.  相似文献   

12.
Feng Gao 《Surface science》2007,601(15):3276-3288
The adsorption of alanine is studied on a Pd(1 1 1) surface using X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). It is found that alanine adsorbs into the second and subsequent layers prior to completion of the first monolayer for adsorption at ∼250 K, while at ∼300 K, alanine adsorbs almost exclusively into the first monolayer with almost no second-layer adsorption. Alanine adsorbs onto the Pd(1 1 1) surface in its zwitterionic form, while the multilayer contains about 30-35% neutral alanine, depending on coverage. Alanine is thermally stable on the Pd(1 1 1) surface to slightly above room temperature, and decomposes almost exclusively by scission of the CCOO bond to desorb CO2 and CO from the COO moiety, and the remaining fragment yields ethylamine and HCN.  相似文献   

13.
J. Wang  E.I. Altman 《Surface science》2007,601(16):3497-3505
The oxidation of Pd(1 0 0) by an oxygen plasma was characterized using X-ray photoelectron spectroscopy (XPS), low energy ion scattering spectroscopy (ISS), temperature programmed desorption (TPD), and low energy electron diffraction (LEED). The oxygen uptake followed a typical parabolic profile with oxygen coverages reaching 32 ML after 1 h in the plasma; a factor of 40 higher than could be achieved by dosing molecular oxidants in ultra high vacuum. Even after adsorbing 32 ML of oxygen, XPS revealed both metallic Pd and PdO in the surface region. The R27o LEED pattern previously attributed to a surface oxide monolayer, slowly attenuated with oxygen coverage indicating that the PdO formed poorly ordered three dimensional clusters that slowly covered the ordered surface oxide. While XPS revealed the formation of bulk PdO, only small changes in the ISS spectra were observed once the surface oxide layer was completed. The leading edges of the O2 TPD curves showed only small shifts with increasing oxygen coverage that could be explained in terms of the lower thermodynamic stability of small oxide clusters. The desorption curves, however, could not be adequately described as simple zero order decomposition of PdO. There has been an ongoing debate in the literature about the relative catalytic activities of PdO and oxygen phases on Pd, the results indicate that any differences in the reactivity between bulk PdO and surface oxides are not associated with differences in the density of exposed Pd atoms or the decomposition kinetics of these two phases.  相似文献   

14.
D. Kaminski 《Surface science》2005,575(3):233-246
Using surface X-ray diffraction, we have determined the structure of three different sub-monolayer phases of Bi on Cu(1 1 1). In contrast to an early report, we find that at a coverage of 1/3 monolayer a substitutional surface alloy is formed with a (√3 × √3)R30° unit cell. For increasing coverage, de-alloying occurs, leading to an overlayer structure at a coverage of 0.5 ML in which the Bi atoms form zigzag chains. The surface contains three domains of this phase. Finally, at a slightly higher coverage of 0.53 ML, the unit cell is compressed in one direction, leading to a uniaxial-incommensurate phase with three rotational domains.The structure determination includes relaxations in the topmost layers and therefore allows a detailed comparison of the most important bond distances. This shows that an increased charge density of the Cu(1 1 1) surface is the main driving force for the different phases.  相似文献   

15.
The adsorption and desorption of sulphur on the clean reconstructed Au(1 1 0)-(1 × 2) surface has been studied by low energy electron diffraction, Auger electron spectroscopy and temperature programmed desorption. The results obtained show a complex behaviour of the S/Au(1 1 0) system during sulphur desorption at different temperatures. Two structures of the stable ordered sulphur overlayer on the Au(1 1 0) surface, p(4 × 2) and c(4 × 4), were found after annealing the S/Au(1 1 0) system at 630 K and 463 K, respectively. The corresponding sulphur coverage for these overlayers was estimated by AES signal intensity analysis of the Au NOO and S LMM Auger lines to be equal to 0.13 ML and 0.2 ML, respectively. Both sulphur structures appear after removing an excess of sulphur, which mainly desorbs at 358 K as determined from TPD spectra. Furthermore, it was not possible to produce the lower coverage p(4 × 2) sulphur structure by annealing the c(4 × 4) surface. In the case of the p(4 × 2) S overlayer on the Au(1 1 0)-(1 × 2) surface it is proposed that the sulphur is attached to “missing row” sites only. The c(4 × 4) S overlayer arises via desorption of S2 molecules that are formed on the surface due to mobility of sulphur atoms after a prolonged anneal.  相似文献   

16.
The electronic structure of 3d transition-metal atoms on face-centered cubic Co(0 0 1) substrate is determined within ab initio density functional calculations in the gradient corrected approach. Calculations are performed for ordered surface configuration with coverage equal to 0.25, 0.5, 0.75 and 1 ML. For Ni and Fe a ferromagnetic coupling with the Co atoms is always obtained independently of the concentration. Moreover the values of the magnetic moments remain similar. For Mn a ferromagnetic coupling is obtained for low-coverage whereas an in-plane antiferromagnetic coupling is found for a complete Mn overlayer on Co(0 0 1). Also, for Sc, Ti, V and Cr a drastic modification of the magnetic map is observed when we go from low-coverage to the monolayer. Cr (Mn) adatoms present antiferromagnetic (ferromagnetic) coupling with Co(0 0 1) for x = 0.25 whereas an in-plane antiferrimagnetic coupling is obtained for x = 1.00.  相似文献   

17.
Using the full potential linearized augmented plane wave (FLAPW) method, thickness dependent magnetic anisotropy of ultrathin FeCo alloy films in the range of 1 monolayer (ML) to 5 ML coverage on Pd(0 0 1) surface has been explored. We have found that the FeCo alloy films have close to half metallic state and well-known surface enhancement in thin film magnetism is observed in Fe atom, whereas the Co has rather stable magnetic moment. However, the largest magnetic moment in Fe and Co is found at 1 ML thickness. Interestingly, it has been observed that the interface magnetic moments of Fe and Co are almost the same as those of surface elements. The similar trend exists in orbital magnetic moment. This indicates that the strong hybridization between interface FeCo alloy and Pd gives rise to the large magnetic moment. Theoretically calculated magnetic anisotropy shows that the 1 ML FeCo alloy has in-plane magnetization, but the spin reorientation transition (SRT) from in-plane to perpendicular magnetization is observed above 2 ML thickness with huge magnetic anisotropy energy. The maximum magnetic anisotropy energy for perpendicular magnetization is as large as 0.3 meV/atom at 3 ML film thickness with saturation magnetization of . Besides, the calculated X-ray magnetic circular dichroism (XMCD) has been presented.  相似文献   

18.
Coverage-dependent adsorption energy of the Ge/Ru(0 0 0 1) growth system and the geometrical distortions of the most stable adsorption structure are investigated through first-principles calculations within density functional theory. A local minimum in adsorption energy is found to be at a Ge coverage of 1/7 monolayer with a Ru(0 0 0 1)- symmetry. Based on this stale superstructure, the scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) images are simulated by means of surface local-density of states (LDOS). The results are consistent well with the STM measurements on the phase for Ge overlayer on Ru(0 0 0 1). From this stimulation, the relations between the STM images and the lattice distortion are also clarified.  相似文献   

19.
D.B. Dougherty 《Surface science》2006,600(19):4484-4491
The chemisorption of benzoate on a Cu(1 1 0) crystal at room temperature was studied using low temperature scanning tunneling microscopy. STM images, obtained at 5 K for low benzoate coverage, show isolated surface species that consist of a single Cu adatom stabilizing two benzoate molecules in a flat orientation. These species are discussed in relation to other known metal-organic surface compounds. At higher coverage the overlayer, called the α-phase, was also observed at 5 K and found to contain features attributable to two Cu adatoms associated with two pairs of non-equivalent benzoate species. The observed topographic features are used to suggest refinements of the structural model of the ordered α-phase overlayer.  相似文献   

20.
Soft X-ray photoemission spectroscopy measurements have been carried out on cleaved n-type GaAs (1 1 0) surfaces covered with Ni overlayers ranging in thickness from 0.05 to 53 Å. The results of these room temperature measurements show that we have band bending effects occurring in conjunction with strong interfacial chemical reactions. Deconvolution of the Ga 3d core line into substrate and metallic components shows dissolution of the substrate at the interface with Ga diffusing into the surface of the metal overlayer for the intermediate coverages (1–15 Å). Observation of the As 3d core level shows out-diffusion of As to the surface over the entire Ni coverage range. Using this deconvolution scheme we are able to follow the band bending of the Schottky barrier formed here up to the 8 Å coverage. The Schottky barrier height is 1.0 ± 0.1 eV for this overlayer thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号