首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inverse microscopic dielectric function of Li metal is evaluated within the time dependent local density approximation (TLDA) using one-electron energies and wave-functions obtained by SCF band structure calculations. Even at larger values of transferred momentum the influence of exchange and correlation is found to be quite small. Local fields are approximated by considering all elements of the dielectric matrix corresponding to the first and second shell of the reciprocal lattice vectors. Their influence is found to be orientation-dependent but in most cases quite small. However, in some cases they even cause a change of the shape of the inverse dielectric function. Our theoretical results agree quite well with measurements of the dynamic structure function by use of inelastic X-ray scattering with transferred energy up to 18 eV. Unrealistic oscillations at still higher energies as well as the narrow width of the peaks indicate the limits of a one-particle scheme.  相似文献   

2.
The influence of excited levels on nonlinear transport properties of a quantum dot weakly coupled to leads is studied using a master-equation approach. A charging model for the dot is compared with a quantum mechanical model for interacting electrons. The currentvoltage curve shows Coulomb lockade and additional finestructure that is related to the excited states of the correlated electrons. Unequal coupling to the leads causes asymmetric conductance peaks. Negative differential conductances are predicted due to the existence of excited states with different spins.  相似文献   

3.
Applying the classical-map hypernetted-chain method (CHNC) developed recently by Dharma-wardana and Perrot, we have studied the temperature and spin-polarization effects on electron correlation in the uniform quantum two-dimensional gas (2DEG) over a wide range of temperature T and spin-polarization ζ. The quantum fluid at the temperature T is mapped to a classical fluid at the temperature Tcf given by Tcf2=T2+Tq2, where the quantum temperature Tq is determined by comparing the calculated correlation energy to that of Monte Carlo results for the fully spin-polarized quantum system at zero temperature. By the iterative solution of the modified HNC equation and the Ornstein-Zernike equation, we have obtained the pair distribution function (PDF) and correlation energy for the two-component classical 2DEG with a classical fluid temperature Tcf. The anti-parallel bridge function B12(r) appearing in the modified HNC equation is determined by using the Monte Carlo correlation energy at T=0 or STLS (Singwi-Tosi-Land-Sjölander) result at T>0 and the numerical solution to the Percus-Yevick (PY) equation for the system of hard disks. By calculating the Pauli potential, the bridge function, PDFs, structure factors and correlation energy, we have shown that in some cases, the properties of the uniform quantum 2DEG depend remarkably on the temperature and spin-polarization.  相似文献   

4.
Starting from the random phase approximation for the weakly coupled multiband tightly-bounded electron systems, we calculate the dielectric matrix in terms of intraband and interband transitions. The advantages of this representation with respect to the usual planewave decomposition are pointed out. The analysis becomes particularly transparent in the long wavelength limit, after performing the multipole expansion of bare Coulomb matrix elements. For illustration, the collective modes and the macroscopic dielectric function for a general cubic lattice are derived. It is shown that the dielectric instability in conducting narrow band systems proceeds by a common softening of one transverse and one longitudinal mode. Furthermore, the self-polarization corrections which appear in the macroscopic dielectric function for finite band systems, are identified as a combined effect of intra-atomic exchange interactions between electrons sitting in different orbitals and a finite inter-atomic tunneling.  相似文献   

5.
The dynamic effect of electrons in a double quantum well under the influence of a monochromatic driving laser field is investigated. Closed-form solutions for the quasienergy and Floquet states are obtained with the help ofSU (2) symmetry. For the case of weak interlevel coupling, explicit expressions of the quasienergy are presented by the use of perturbation theory, from which it is found that as long as the photon energy is not close to the tunnel splitting, the electron will be confined in an initially occupied eigenstate of the undriven system during the whole evolution process. Otherwise, it will transit between the lowest two levels in an oscillatory behavior.  相似文献   

6.
7.
Yüksel Ayaz 《Physics letters. A》2009,373(43):3982-3988
We study nonlocality effects of a bulk plasmalike dielectric medium on the plasmon spectrum of a one-dimensional (1D) quantum wire superlattice in interaction with the 3D nonlocal host bulk plasma, by carrying out a closed-form analytic determination of the inverse dielectric function κ for the joint nanostructure system within the random phase approximation (RPA), in which we treat nonlocality of the 1D superlattice in the RPA and that of the bulk medium in the hydrodynamic model. By examining the frequency poles of κ (i.e., the dispersions relations), we show analytically that coupled plasmon modes of the interacting 1D superlattice-3D nonlocal host are damped in high frequencies (damping is pronounced near resonance region) and that nonlocality of the host medium introduces nonlocal low frequency (real) modes into the spectrum, which have cutoff frequencies for finite wave vector values. In order to describe the impact of nonlocality effects more clearly, we also examine the spectrum numerically.  相似文献   

8.
We present an analytical model for the Coulomb interaction effects in quantum wires forming a nanochannel array. We study the elementary excitations (plasmons and electron-hole excitations) of electron arrays forming three-dimensional structures. The plasmon spectrum of boson arrays is also calculated. Our model applies to bulk material with one-dimensional conduction channels as realized in organic or polymer crystals and in nanochannel array glasses.  相似文献   

9.
We present a formalism for calculating the absorption coefficient of a pair of coaxial tubules. A spatially nonlocal, dynamical self-consistent field theory is obtained by calculating the electrostatic potential produced by the charge density fluctuations as well as the external electric field. There are peaks in the absorption spectrum arising from plasma excitations corresponding either to plasmon or particle-hole modes. In this Letter, we numerically calculate the plasmon contribution to the absorption spectrum when an external electric field is applied. The number of peaks depends on the radius of the inner as well as outer tubule. The height of each peak is determined by the plasmon wavelength and energy. For a chosen wave number, the most energetic plasmon has the highest peak corresponding to the largest oscillator strength of the excited modes. Some of the low-frequency plasmon modes have such weak coupling to an external electric field that they are not seen on the same scale as the modes with larger energy of excitation. We plot the peak positions of the plasmon excitations for a pair of coaxial tubules. The coupled modes on the two tubules are split by the Coulomb interaction. The energies of the two highest plasmon branches increase with the radius of the outer tubule. On the contrary, the lowest modes decrease in energy as this radius is increased. No effects due to inter-tubule hopping are included in these calculations.  相似文献   

10.
We have developed a technique capable of measuring the tunneling current into both localized and conducting states in a 2D electron system (2DES). The method yields I-V characteristics for tunneling with no distortions arising from low 2D in-plane conductivity. We have used the technique to determine the pseudogap energy spectrum for electron tunneling into and out of a 2D system and, further, we have demonstrated that such tunneling measurements reveal spin relaxation times within the 2DEG. Pseudogap: In a 2DEG in perpendicular magnetic field, a pseudogap develops in the tunneling density of states at the Fermi energy. We resolve a linear energy dependence of this pseudogap at low excitations. The slopes of this linear gap are strongly field dependent. No existing theory predicts the observed behavior. Spin relaxation: We explore the characteristics of equilibrium tunneling of electrons from a 3D electrode into a high mobility 2DES. For most 2D Landau level filling factors, we find that electrons tunnel with a single, well-defined tunneling rate. However, for spin-polarized quantum Hall states (ν=1, 3 and 1/3) tunneling occurs at two distinct rates that differ by up to two orders of magnitude. The dependence of the two rates on temperature and tunnel barrier thickness suggests that slow in-plane spin relaxation creates a bottleneck for tunneling of electrons.  相似文献   

11.
Two interacting electrons in a Gaussian confining potential quantum dot are considered under the influence of a perpendicular homogeneous magnetic field. The energy levels of the low-lying states are calculated as a function of magnetic field. Calculations are made by using the method of few-body physics within the effective-mass approximation. A ground state behavior (singlet→triplet state transitions) as a function of the strength of a magnetic field has been found in the weak confinement case as a two-electron quantum dot with parabolic confining potential.  相似文献   

12.
13.
The uniform electron fluid is the reference model for density functional calculations. Even for this system, many-body perturbation theory, and related methods become questionable when the density parameter rs exceeds unity. Hence, quantum Monte Carlo (QMC) simulation has been almost the only applicable method. We review a new approach, which uses a mapping of the quantum fluid to a classical Coulomb fluid, based on density-functional concepts. It is applicable at finite temperatures and arbitrary spin polarizations as well, and correctly recovers even the logarithmic terms in the exchange and correlations energies close to T=0. We show by detailed comparison with available QMC data that the method yields accurate pair-distribution functions, spin-dependent energies, static local-field factors, Landau parameter-based quantities like m∗ and g∗, for strongly coupled electron fluids.  相似文献   

14.
We demonstrate a replacement of the non-uniform sub-band density of quasi-2D electron layers by an effective uniform-slab density. Exchange, correlation and Fermi-liquid properties are determined via a mapping of the electron liquid to a classical fluid, using the hyper-netted-chain equation inclusive of bridge corrections, (i.e. the CHNC), as a function of the density, spin-polarization, layer width and the temperature. Our parameters-free theory is in good accord with quantum simulations, with effective-mass and spin-susceptibility results for 2D layers found in GaAs/AlGaAs structures.  相似文献   

15.
We consider the nonlinear interactions between finite amplitude electron and ion plasma oscillations in a fermionic quantum plasma. Accounting for the quantum statistical electron pressure and the quantum Bohm potential, we derive a set of coupled nonlinear equations that govern the dynamics of modulated electron plasma oscillations (EPOs) in the presence of the nonlinear ion oscillations (NLIOs). We numerically study stationary solutions of our coupled nonlinear equations. We find that the quantum parameter H (equal to the ratio between the plasmonic and electron Fermi energy densities) introduces new features to the electron density and electric potential humps of localized NLIOs in the absence of EPOs. Furthermore, the nonlinear coupling between the EPOs and NLIOs gives rise to a new class of envelope solitons composed of bell shaped electric field envelope of the EPOs, which are trapped in the electron density hole (and an associated negative oscillatory electric potential) that is produced by the ponderomotive force of the EPOs. The knowledge of the localized plasmonic structures is of immense value for interpreting experimental observations in dense quantum plasmas.  相似文献   

16.
The motion of a few electrons in a three-dimensional harmonic oscillator potential under the influence of a homogeneous magnetic field of arbitrary direction is studied. The ground state of the Fermi system is obtained by minimizing the total energy with regard to the confining frequencies. From this a dependence of the equilibrium shape on the electron number, the magnetic field parameters and the slab thickness is found.  相似文献   

17.
We look at some one-dimensional semi-infinite superlattices with an underlying Hamiltonian that is of the nearest neighbour, tight binding type. A real space rescaling procedure which is exact in one dimension is applied to obtain the location of the subbands. It has been found that these subbands never overlap in 1D, and we interpret this as a band repulsion effect. Relevance in the case of a disordered system where this band repulsion crosses over to the well-known level repulsion is discussed. Then with a proper matching at the boundary we solve for the sets of denumerably infinite number of decaying solutions (the surface states) in the gaps. These types of states have been proposed quite some time ago. We look at detail theirexact analytical solutions in 1D and find that their decay lengths near the band edges diverge as |E–E b|–v, wherev=1/2 andE b is the nearest band edge. The decay lengths and their divergence exponent match extremely well with those obtained from transfer matrix method. Some recent experiments on quantum well structures seem to have observed such states.  相似文献   

18.
A theory is presented for the propagation of phonon-polariton modes arising when phonons are coupled to electromagnetic waves in multilayered structures. A multi-layered structure consists of a thin film surrounded symmetrically by a bounding media. Numerical calculations are given for s-polarized phonon-polariton modes in the case where the bounding media are assumed to be semi-infinite layers with nonlinear dielectric functions of ionic crystal type supporting optical phonon modes and the thin film is characterized by a Kerr-type nonlinear dielectric function. The phonon-polaritons were found to have distinct branches characteristic of optical phonons and showing features that are different from those of plasmon-polaritons [S. Baher, M.G. Cottam, Surf. Rev. Lett. 10 (2003) 13]. The parameters that modify the modes are the in-plane wave vector, the thickness of the film, the phonon frequency and the nonlinearity of each layer. It was found that by increasing the film thickness and nonlinearity coefficient, the curves move to the left and the number of the branches increases without changing the pattern of the curves.  相似文献   

19.
In this work we studied the mixture of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), a commercial polymer, with monobasic potassium phosphate (KDP), a piezoelectric salt, as a possible novel material in the fabrication of a low cost, easy-to-make, flexible pressure sensing device. The mixture between KDP and PEDOT:PSS was painted in a flexible polyester substrate and dried. Afterwards, I × V curves were carried out. The samples containing KDP presented higher values of current in smaller voltages than the PEDOT:PSS without KDP. This can mean a change in the chain arrays. Other results showed that the material responds to directly applied pressure to the sample that can be useful to sensors fabrication.  相似文献   

20.
We present a method to form semiconductor nanodots on Si substrates by using ultrathin Si oxide technology and the results on their optical properties. We can form ultra-small semiconductor nanodots with the size of ∼5 nm and ultra-high density of ∼1012 cm−2 on Si surfaces covered with ultrathin SiO2 films of ∼0.3 nm thickness. We focus on photoluminescence and electroluminescence properties of Ge nanodots embedded in Si films. These structures exhibit intense luminescence in the energy region of about 0.8 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号