首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. In our approach quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.  相似文献   

2.
The question of the cause of inertial reaction forces and the validity of Mach's principle are investigated. A recent claim that the cause of inertial reaction forces can be attributed to an interaction of the electrical charge of elementary particles with the hypothetical quantum mechanical zero-point fluctuation electromagnetic field is shown to be untenable. It fails to correspond to reality because the coupling of electric charge to the electromagnetic field cannot be made to mimic plausibly the universal coupling of gravity and inertia to the stress-energy-momentum (i.e., matter) tensor. The gravitational explanation of the origin of inertial forces is then briefly laid out, and various important features of it explored in the last half-century are addressed.  相似文献   

3.
The possibility of an extrinsic origin for inertial reaction forces has recently seen increased attention in the physical literature. Among theories of extrinsic inertia, the two considered by the current work are (1) the hypothesis that inertia is a result of gravitational interactions and (2) the hypothesis that inertial reaction forces arise from the interaction of material particles with local fluctuations of the quantum vacuum. A recent article supporting the former and criticizing the latter is shown to contain substantial errors.  相似文献   

4.
In previous work it has been shown that the electromagnetic quantum vacuum, or electromagnetic zero‐point field, makes a contribution to the inertial reaction force on an accelerated object. We show that the result for inertial mass can be extended to passive gravitational mass. As a consequence the weak equivalence principle, which equates inertial to passive gravitational mass, appears to be explainable. This in turn leads to a straightforward derivation of the classical Newtonian gravitational force. We call the inertia and gravitation connection with the vacuum fields the quantum vacuum inertia hypothesis . To date only the electromagnetic field has been considered. It remains to extend the hypothesis to the effects of the vacuum fields of the other interactions. We propose an idealized experiment involving a cavity resonator which, in principle, would test the hypothesis for the simple case in which only electromagnetic interactions are involved. This test also suggests a basis for the free parameter η(ν) which we have previously defined to parametrize the interaction between charge and the electromagnetic zero‐point field contributing to the inertial mass of a particle or object.  相似文献   

5.
By using the principle of metrical invariance which requires that all physical laws are independent of the choice of units (alternatively, all physical laws are invariant with respect to scale transformations of space-time coordinates) and Goldstone's theorem, a universal regulator is discovered. The cosmic field is the Yang-Mills field of the local scale transformations. Its physical role is as follows. Cosmon, its quantum, is a massless, spinless, and neutral particle. The cosmic field is created by inertial masses. Therefore it participates in all physical processes and if its presence is taken into account, then the quantum field theory is free from all ultraviolet infinities. From the point of view of Yang-Mills field theory, it is proved that the so-called gravitational masses are identical with inertial masses and the gravitational field is created by inertial masses moving non-inertially. This fact permits to solve satisfactorily the problem of energy-momentum complex of the gravitational field. The system of equations which defines simultaneously the cosmic and gravitational fields is established. A non-Einstein cosmology is outlined.  相似文献   

6.
We present an approach to understanding the origin of inertia involving the electromagnetic component of the quantum vacuum and propose this as a step toward an alternative to Mach's principle. Preliminary analysis of the momentum flux of the classical electromagnetic zero-point radiation impinging on accelerated objects as viewed by an inertial observer suggests that the resistance to acceleration attributed to inertia may be at least in part a force of opposition originating in the vacuum. This analysis avoids the ad hoc modeling of particle-field interaction dynamics used previously by Haisch, Rueda, and Puthoff (Phys. Rev. A 49, 678, (1994)) to derive a similar result. This present approach is not dependent upon what happens at the particle point, but on how an external observer assesses the kinematical characteristics of the zero-point radiation impinging on the accelerated object. A relativistic form of the equation of motion results from the present analysis. Its manifestly covariant form yields a simple result that may be interpreted as a contribution to inertial mass. We note that our approach is related by the principle of equivalence to Sakharov's conjecture (Sov. Phys. Dokl. 12, 1040, (1968)) of a connection between Einstein action and the vacuum. The argument presented may thus be construed as a descendant of Sakharov's conjecture by which we attempt to attribute a mass-giving property to the electromagnetic component—and possibly other components—of the vacuum. In this view the physical momentum of an object is related to the radiative momentum flux of the vacuum instantaneously contained in the characteristic proper volume of the object. The interaction process between the accelerated object and the vacuum (akin to absorption or scattering of electromagnetic radiation) appears to generate a physical resistance (reaction force) to acceleration suggestive of what has been historically known as inertia.  相似文献   

7.
A recent assertion that inertial and gravitational forces are entropic forces is discussed. A more conventional approach is stressed herein, whereby entropy is treated as a result of relative motion between observers in different frames of reference. It is demonstrated that the entropy associated with inertial and gravitational forces is dependent upon the well known lapse function of general relativity. An interpretation of the temperature and entropy of an accelerating body is then developed, and used to relate the entropic force to Newton's second law of motion. The entropic force is also derived in general coordinates. An expression of the gravitational entropy of in‐falling matter is then derived by way of Schwarzschild coordinates. As a final consideration, the entropy of a weakly gravitating matter distribution is shown to be proportional to the self‐energy and the stress‐energy‐momentum content of the matter distribution.  相似文献   

8.
A physical nature of inertia is discussed, and a hypothesis about its induction nature is put forward. According to this hypothesis, any body in motion, in addition to gravitational field, generates one more field called inertial. A change of this field induces inertial forces. It is proved that inertial and gravitational fields are interrelated, induce each other, and form a unified field similar to the electromagnetic field. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 37–42, July, 2006.  相似文献   

9.
The role of the equivalence principle in the context of non-relativistic quantum mechanics and matter wave interferometry, especially atom beam interferometry, will be discussed. A generalised form of the weak equivalence principle which is capable of covering quantum phenomena too, will be proposed. It is shown that this generalised equivalence principle is valid for matter wave interferometry and for the dynamics of expectation values. In addition, the use of this equivalence principle makes it possible to determine the structure of the interaction of quantum systems with gravitational and inertial fields. It is also shown that the path of the mean value of the position operator in the case of gravitational interaction does fulfill this generalised equivalence principle.  相似文献   

10.
The generalized equations of the inertial gravitational field are derived from variational principles. It is shown that variational properties of inertial gravitational potentials have important peculiarities which cause peculiarities of equations obtained.  相似文献   

11.
The analysis of the measurement of gravitational fields leads to the Rosenfeld inequalities. They say that, as an implication of the equivalence of the inertial and passive gravitational masses of the test body, the metric cannot be attributed to an operator that is defined in the frame of a local canonical quantum field theory. This is true for any theory containing a metric, independently of the geometric framework under consideration and the way one introduces the metric in it. Thus, to establish a local quantum field theory of gravity one has to transit to non-Riemann geometry that contains (beside or instead of the metric) other geometric quantities. From this view, we discuss a Riemann–Cartan and an affine model of gravity and show them to be promising candidates of a theory of canonical quantum gravity.  相似文献   

12.
It is shown that, in a supersymmetric theory, the sum of all vacuum diagrams vanishes identically as a consequence of compensations among contributions involving different fields of the supermultiplet. This means that the zero-point energy-momentum density is zero to all orders in the supersymmetric interaction. In an external gravitational field no cosmological term is induced through the vacuum polarization of the matter fields. The situation when supersymmetry is spontaneously broken, or softly broken is also discussed.  相似文献   

13.
Classical electron theory with classical electromagnetic zero-point radiation (stochastic electrodynamics) is the classical theory which most closely approximates quantum electrodynamics. Indeed, in inertial frames, there is a general connection between classical field theories with classical zero-point radiation and quantum field theories. However, this connection does not extend to noninertial frames where the time parameter is not a geodesic coordinate. Quantum field theory applies the canonical quantization procedure (depending on the local time coordinate) to a mirror-walled box, and, in general, each non-inertial coordinate frame has its own vacuum state. In particular, there is a distinction between the “Minkowski vacuum” for a box at rest in an inertial frame and a “Rindler vacuum” for an accelerating box which has fixed spatial coordinates in an (accelerating) Rindler frame. In complete contrast, the spectrum of random classical zero-point radiation is based upon symmetry principles of relativistic spacetime; in empty space, the correlation functions depend upon only the geodesic separations (and their coordinate derivatives) between the spacetime points. The behavior of classical zero-point radiation in a noninertial frame is found by tensor transformations and still depends only upon the geodesic separations, now expressed in the non-inertial coordinates. It makes no difference whether a box of classical zero-point radiation is gradually or suddenly set into uniform acceleration; the radiation in the interior retains the same correlation function except for small end-point (Casimir) corrections. Thus in classical theory where zero-point radiation is defined in terms of geodesic separations, there is nothing physically comparable to the quantum distinction between the Minkowski and Rindler vacuum states. It is also noted that relativistic classical systems with internal potential energy must be spatially extended and can not be point systems. The classical analysis gives no grounds for the “heating effects of acceleration through the vacuum” which appear in the literature of quantum field theory. Thus this distinction provides (in principle) an experimental test to distinguish the two theories.  相似文献   

14.
Charge, like mass in Newtonian mechanics, is an irreducible element of electromagnetic theory that must be introduced ab initio. Its origin is not properly a part of the theory. Fields are then defined in terms of forces on either masses—in the case of Newtonian mechanics, or charges in the case of electromagnetism. General Relativity changed our way of thinking about the gravitational field by replacing the concept of a force field with the curvature of space-time. Mass, however, remained an irreducible element. It is shown here that the Reissner-Nordström solution to the Einstein field equations tells us that charge, like mass, has a unique space-time signature.  相似文献   

15.
It is suggested that an understanding of blackbody radiation within classical physics requires the presence of classical electromagnetic zero-point radiation, the restriction to relativistic (Coulomb) scattering systems, and the use of discrete charge. The contrasting scaling properties of nonrelativistic classical mechanics and classical electrodynamics are noted, and it is emphasized that the solutions of classical electrodynamics found in nature involve constants which connect together the scales of length, time, and energy. Indeed, there are analogies between the electrostatic forces for groups of particles of discrete charge and the van der Waals forces in equilibrium thermal radiation. The differing Lorentz- or Galilean-transformation properties of the zero-point radiation spectrum and the Rayleigh-Jeans spectrum are noted in connection with their scaling properties. Also, the thermal effects of acceleration within classical electromagnetism are related to the existence of thermal equilibrium within a gravitational field. The unique scaling and phase-space properties of a discrete charge in the Coulomb potential suggest the possibility of an equilibrium between the zero-point radiation spectrum and matter which is universal (independent of the particle mass), and an equilibrium between a universal thermal radiation spectrum and matter where the matter phase space depends only upon the ratio mc 2/k B T. The observations and qualitative suggestions made here run counter to the ideas of currently accepted quantum physics.  相似文献   

16.
The physical origin of inertial forces is shown to be a consequence of the local interaction of Dirac's real covariant ether model(1) with accelerated microobjects, considered as real extended particlelike solitons, piloted by surrounding subluminal real wave fields packets.(2) Their explicit form results from the application of local inertial Lorentz transformations to the particles submitted to noninertial velocitydependent accelerations, i.e., constitute a natural extension of Lorentz's interpretation of restricted relativity.(3) Indeed Dirac's real physical covariant ether model implies inertial forces if one considers the real accelerated noninertial motions of general relativity, defined within the absolute local inertial frames associated with the observed local isotropy of the 2.7° K background microwave radiation.(4) Inertia thus appears as a necessary consequence of the real particle motions described by the E.d.B.B. formalism of quantum mechanics.  相似文献   

17.
In the present work we study models with material and gravitational fields unified in a self-consistent manner [2, 3]. We use a semiclassical approach, where the gravitational field is classical, but the other fields may be quantum ones. The mechanism of spontaneous symmetry breaking is due to the conformai generalization of the Higgs fields in a curved spacetime. Gravitation will be considered as a gauge field and then in the usual Einstein version.  相似文献   

18.
The effective Lagrangian and the zero-point (or Casimir) energy is calculated from the zeta-function which is obtained by the heat kernel method using the expansion of (Bormann and Antonsen, 1995). Calculated this way this unavoidable energy contribution is automatically regularised and ready for further investigation. Interesting observations include a large energy contribution (from scalar field and fermionic zero-point fluctuations) that is non-zero as the mass goes to zero, perhaps indicating a topological origin. Also, plots of the contribution of gauge boson fields to the zero-point energy, as a function of radial distance (gravitational field strength) and the size of the gauge boson coupling (gauge field strength) shows great variation, notably the occurrence of resonances.  相似文献   

19.
T. Banks 《Nuclear Physics B》1985,249(2):332-360
We study cosmology from the point of view of quantum gravity. Some light is thrown on the nature of time, and it is suggested that the cosmological arrow of time is generated by a spontaneous breakdown of TCP. Conventional cosmological models in which quantum fields interact with a time-dependent gravitational field are shown to describe an approximation to the quantum gravitational wave function which is valid in the long-wavelength limit. Two problems with initial conditions are resolved in models in which a negative bare cosmological constant is cancelled by the classical excitation of a Bose field η with a very flat potential. These models can also give a natural explanation for the observed value of the cosmological constant.  相似文献   

20.
The paper aims to apply the complex octonion to explore the influence of the energy gradient on the Eötvös experiment, impacting the gravitational mass in the ultra-strong magnetic fields. Until now the Eötvös experiment has never been validated under the ultra-strong magnetic field. It is aggravating the existing serious qualms about the Eötvös experiment. According to the electromagnetic and gravitational theory described with the complex octonions, the ultra-strong magnetic field must result in a tiny variation of the gravitational mass. The magnetic field with the gradient distribution will generate the energy gradient. These influencing factors will exert an influence on the state of equilibrium in the Eötvös experiment. That is, the gravitational mass will depart from the inertial mass to a certain extent, in the ultra-strong magnetic fields. Only under exceptional circumstances, especially in the case of the weak field strength, the gravitational mass may be equal to the inertial mass approximately. The paper appeals intensely to validate the Eötvös experiment in the ultra-strong electromagnetic strengths. It is predicted that the physical property of gravitational mass will be distinct from that of inertial mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号