首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mixtures of a semifluorinated alkane 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-henicosafluorotriacontane (abbr. F10H20) and different alcohols were investigated at the air/water interface using surface pressure-area isotherms complemented with BAM images. In our studies, octadecanol and its fluorinated derivatives differing in the degree of fluorination were researched. To verify the influence of an iso branching of the fluorinated segment in an alcohol molecule, the properties of perfluorooctyldecanol and perfluoro-iso-nonyldecanol in mixtures with F10H20 were compared. From the isotherms datapoints, the excess of free energy of mixing (DeltaG(exc)) together with the interaction parameter (alpha) were calculated. On the basis of the additivity rule and BAM images, phase diagrams for all of the investigated systems were constructed. It occurs that F10H20 mixes with the fully hydrogenated alcohol, octadecanol, within the whole range of alcohol mole fractions, whereas it is completely immiscible with its perfluorinated analogue. Regarding the mixtures of F10H20 with semifluorinated alcohols, it turned out that these systems exhibit limited miscibility, i.e., are miscible at a low semifluorinated alcohol proportion, whereas upon increasing alcohol content, the systems start to demix. It may be concluded that the molecular packing in mixed monolayers is the key factor determining the miscibility of F10H20 of the investigated alcohols.  相似文献   

2.
Alamethicin (ALM), a 20-amino acid antibiotic peptide (peptaibol) from fungal sources, was mixed in Langmuir monolayers with six different surfactants: semifluorinated (F6H18, F10H19, F8H10OH, F6H10SH) and hydrogenated (C18SH and DODAC), aimed at finding appropriate molecules for ALM incorporation for nanodevice construction. Alamethicin-containing mixed monolayers were investigated by means of surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM). Our results show that only semifluorinated alkanes can serve as an appropriate material since they form miscible and homogeneous monolayers with ALM within the whole concentration range. All the remaining surfactants, possessing polar groups, were found to demix with ALM. This effect was explained as being due to the existence of strong polar interactions between vertically oriented surfactant molecules, which tend to separate from horizontally oriented alpha-helices of the peptide. On the contrary, semifluorinated alkanes, lacking any polar group in their structure and bearing a large dipole moment, interact with ALM, also possessing a huge cumulative dipole moment. These dipole-dipole interactions between ALM and SFAs are more attractive than those between SFA molecules in their pure monolayers, causing the large ALM molecule, situated parallel to the interface, to be surrounded by SFA molecules in perpendicular orientation, leading to the formation of a highly organized binary mixed monolayer. BAM images of the ALM monolayer indicate that this peptide collapses with the nucleation and growth mechanism, like the majority of surfactants, which contradicts the model of ALM collapse by desorption, previously published in the literature.  相似文献   

3.
Mixed monolayers of gramicidin A (GA) and three alcohols, differing in the degree of fluorination, namely C18OH, F18OH, and F8H10OH have been investigated by means of: surface manometry (pi-A isotherms) and Brewster angle microscopy (BAM) aiming at finding appropriate molecules for incorporating gramicidin A for a biosensor design. Our results proved that only the semifluorinated alcohol is appropriate material for this purpose since it forms miscible and homogeneous monolayers with GA within the whole concentration range. The experimental results have been supported by the calculations of van der Waals energy profiles using the Insight II program. Both the hydrogenated and perfluorinated alcohols were found to aggregate at higher surface pressures, which exclude their application for gramicidin-based biosensor construction.  相似文献   

4.
A series of semifluorinated alcohols differing in the proportion of the perfluorinated to hydrogenated chains length was synthesized and investigated in Langmuir monolayers using surface pressure and surface potential measurements. All the investigated semifluorinated alcohols were found to be capable of stable floating monolayer formation. The stability of monolayers was found to be higher upon increasing the length of the perfluorinated segment. A lower stability of the monolayers from alcohols having shorter perfluorinated fragment was attributed to the aggregation process, which was visualized with Brewster angle microscopy (BAM). Most condensed monolayers were formed by compounds with longer perfluorinated moiety, whereas monolayers composed by molecules with an iso-branched perfluorinated segment were found to be more expanded. The change of electric surface potential was negative along the whole compression. The maximum absolute values of DeltaV varies, depending on the number of CF(2) groups, from ca. -400 mV for F6H10OH to ca. -700 mV for F10H10OH. The dipole moments of free molecules were calculated with Hyperchem, and the obtained values were approximately the same (within the experimental error), i.e., 2.8D for all the investigated molecules, independently on the perfluorinated fragment length. The dipole moment vector was found to be virtually aligned to the main molecular axis for the studied compounds. Therefore, the observed differences in the measured values of DeltaV can result from a different dielectric permittivity of a particular monolayer.  相似文献   

5.
Selected fluorinated and hydrogenated surfactants, namely a semifluorinated alkane (SFA): 1,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10-henicosafluorononacosane (F10H19), two long chain alcohols: 18,18,18,17,17,16,16,15,15,14,14,13,13,12,12,11,11-heptadecafluorooctadecane-1-ol (F8H10OH) and octadecane-1-ol (C18OH) and with two long chain thiols of the analogous apolar part structure to the above-mentioned alcohols, i.e.: 18,18,18,17,17,16,16,15,15,14,14,13,13,12,12,11,11-heptadecafluorooctadecane-1-thiol (F8H10SH) and octadecane-1-thiol (C18SH) have been tested in mixtures with valinomycin as potential artificial matrixes for its immobilization. The thermodynamic analysis (ΔGexc vs Xval plots) based on surface pressure–area isotherm registration for particular valinomycin/surfactant mixtures, complemented with BAM images of the films structure indicate that only fluorinated surfactants are suitable materials for valinomycin incorporation as they form homogeneous miscible monolayers at Xval below 0.5.  相似文献   

6.
7.
Mixed monolayers of stearic acid (SA) and octadecylamine (ODA) at the air/water interface were investigated in this article. The miscibility of the two compounds was evaluated by the measurement of surface pressure-area per molecule (pi-A) isothems and the direct observation of Brewster angle microscopy (BAM) on the water surface. The two compounds were spread individually on the subphase (method 1) or premixed first in the spreading solvent and then cospread (method 2). The effect of spreading method on the miscibility of the two compounds was also studied. The results show that the mixed monolayers prepared by method 1 cannot get a well-mixed state. The isotherms of mixed monolayers preserve both characteristics of SA and ODA and exhibit two collapse points. The calculated excess surface area is very small. Besides, distinguished domains corresponding to those of pure SA and ODA can be inspected from the BAM images. Such results indicate that SA and ODA cannot get a well-mixed phase via 2-dimensional mixing. On the contrary, in the mixed monolayer prepared by cospreading, the two compounds exhibit high miscibility. In the pi-A isotherms, the individual characteristics of SA and ODA disappear. The calculated excess area exhibits a highly positive deviation which indicates the existence of special interaction between the two compounds. The low compressibility of isotherm implies the highly rigid characteristic of the mixed monolayer. which was also sustained by the striplike collapse morphology observed from the BAM. The rigid characteristic of SA/ODA mixed monolayer was attributed to the formation of "catanionic surfactant" by electrostatic adsorption of headgroups of SA and ODA or to the formation of salt by acid-base reaction.  相似文献   

8.
This work presents the results of phase behavior studies of two-dimensional (2D) binary systems involving semifluorinated alkanes (SFAs) and fatty alcohols. Four different SFAs were selected for investigations: (i) with a short and branched perfluorinated moiety (iF3H20), (ii) with a short and normal perfluorinated chain (F4H20), (iii) with a long and branched perfluorinated fragment (iF9H20), and (iv) with a long and normal perfluorinated group (F10H20). Two alcohols were selected to mix with the above-mentioned SFAs: tetradecanol and docosanol. The measurements were based on surface pressure/area isotherms in addition to Brewster angle microscope (BAM) imaging. Dependencies of the collapse surface pressure and the compression modulus vs the monolayer composition together with the excess free energy of mixing values, complemented with BAM images, enabled us to draw some general conclusions regarding the phase behavior of the investigated mixed systems. Generally, it has been noticed that the addition of docosanol into an SFA monolayer exerts a condensing effect, contrary to tetradecanol. Moreover, SFAs with a long perfluorinated segment mix to a larger extent with alcohols as compared to their analogues having a short perfluorinated moiety. The resultant phase diagrams for all the investigated eight mixtures are presented and discussed.  相似文献   

9.
Mixtures of biodegradable polymers, poly(dl-lactide) and poly(ε-caprolactone) monolayers at the air/water interface have been studied. Surface pressure-area isotherms of poly(dl-lactide), poly(ε-caprolactone) and their mixtures were obtained by monolayer compression at constant temperature. The behavior of the mixed monolayers was analyzed according to the classical addition rule. Good agreement was observed between experimental and ideal behavior except for one composition where a negative deviation was observed. The polymer monolayer miscibility was corroborated by comparison between the surface pressure-area isotherms of the random copolymers (dl-lactide-co-ε-caprolactone) and their mixtures at the same compositions. Brewster angle microscopy (BAM) shows homogeneity in the monolayers in the whole range of compositions. These results also confirm the miscibility of the mixtures.  相似文献   

10.
The collapse of Langmuir monolayers of poly(vinyl stearate) (PVS) at the air-water interface has been investigated by combined measurements of the surface pressure-area isotherms and Brewster angle microscopy (BAM). Atomic force microscopy (AFM) has been used to gain out-of-plane structural information on collapsed films transferred onto a solid substrate by a modified version of the inverse Langmuir-Schaefer deposition method. At high areas per monomer repeat unit, BAM imaging revealed that the films are heterogeneous, with large solidlike domains (25-200 mum in diameter) coexisting with liquidlike domains. Upon film compression, the domains coalesced to form a homogeneous monolayer before the film collapsed at constant pressure, forming irreversible three-dimensional (3D) structures. BAM images showed that two 3D structures coexisted: buckles of varying width extending across the surface and perpendicular to the direction of the compression and dotted islandlike structures. Upon expansion, the film fractured and both 3D protrusions persisted, explaining the marked hysteresis recorded in the Langmuir isotherms. Experiments with AFM confirmed the 3D nature of both protrusions and revealed that many buckles contain substructures corresponding to narrow buckles whose heights are a multiple of a single bilayer. Additionally, many multilayer islands with diameters spanning from 0.2 mum to over 3.5 mum were characterized by varying heights between 2 nm and up to over 50 nm. The key to the formation of the irreversible 3D structures is the presence of large inhomogeneities in the PVS monolayer, and a generalized phenomenological model is proposed to explain the collapse observed.  相似文献   

11.
It has recently been found that monodisperse surface micelles (hemimicelles) were formed in Langmuir monolayers of the semifluorinated alkane C8F17C16H33 (F8H16) after transfer onto silicon wafers. Grazing incidence X-ray diffraction studies have demonstrated that compression of mixed Langmuir monolayers made from combinations of dipalmitoyl phosphatidylethanolamine (DPPE) and diblock F8H16 in various molar ratios resulted in the complete expulsion of the diblock molecule at high surface pressure. F8H16 then formed a second layer on top of a DPPE-only monolayer, demonstrating a novel type of reversible, pressure-induced, vertical phase separation. Using atomic force microscopy and X-ray reflectivity, we show now that mixed DPPE/F8H16 (1:1.3) Langmuir-Blodgett films transferred onto silicon wafers below 10 mN m(-1) are laterally phase separated and consist of domains of F8H16 surface micelles in coexistence with a monolayer of DPPE. The density of the network of F8H16 surface micelles increases when the surface pressure of transfer increases. Around 10 mN m(-1), the F8H16 surface micelles start to glide on the DPPE monolayer, progressively overlying it, until total coverage is achieved.  相似文献   

12.
A surfactant containing the perfluorobenzyl moiety attached at the 10 position of decanol (10-perfluorobenzyldecan-1-ol, PBD) was synthesized and employed for Langmuir monolayer characterization, using surface pressure (π) and electric surface potential (ΔV)-mean molecular area (A) isotherms. Both static and dynamic stability experiments demonstrate that the monolayers formed by PBD are of satisfactory stability. Characteristic dendritic structures were observed with Brewster Angle Microscope (BAM) upon the whole compression up to the vicinity of collapse, where 3D crystallites appeared. The monolayer thickness is found to be comparable to the PBD molecule length. It occurs that ΔV has negative value even at large molecular areas, and decreases gradually along the compression, reaching a minimum of ca. −500 mV. Using the Helmholtz model, the apparent dipole moment was calculated upon film compression. The measurements were complemented with semi-empirical calculations involving molecular geometry optimization and dipole moment estimation.  相似文献   

13.
The 3D phase formation was monitored in relaxation experiments of the collapsed Langmuir monolayers of selected partially fluorinated tetracosanes, that is, F6H18, F8H16, and F10H14. To carry out these experiments, the classical method of surface manometry, such as pi-A isotherms registration and the molecular area-time dependencies, under quasi-static monitoring conditions were applied. The evolution of 3D structures at the water/air interface was observed with Brewster angle microscopy (BAM). The obtained data were interpreted according to the nucleation-growth-collision theory model. It occurred that, even though the investigated chemicals are not classical surfactants and do not possess any polar headgroup, their evolution from a 2D monolayer to 3D structures can be successfully modeled with the above-mentioned theory. The influence of the subphase temperature on the nucleation process is also discussed.  相似文献   

14.
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

15.
16.
The phase behavior and morphological characteristics of monolayers composed of equimolar mixed cationic-anionic surfactants at the air/water interface were investigated by measurements of surface pressure-area per alkyl chain (pi-A) and surface potential-area per alkyl chain (DeltaV-A) isotherms with Brewster angle microscope (BAM) observations. Cationic single-alkyl ammonium bromides and anionic sodium single-alkyl sulfates with alkyl chain length ranging from C(12) to C(16) were used to form mixed surfactant monolayers on the water subphase at 21 degrees C by a co-spreading approach. The results demonstrated that when the monolayers were at states with larger areas per alkyl chain during the monolayer compression process, the DeltaV-A isotherms were generally more sensitive than the pi-A isotherms to the molecular orientation variations. For the mixed monolayer components with longer alkyl chains, a close-packed monolayer with condensed monolayer characteristics resulted apparently due to the stronger dispersion interaction between the molecules. BAM images also revealed that with the increase in the alkyl chain length of the surfactants in the mixed monolayers, the condensed/collapse phase formation of the monolayers during the interface compression stage became pronounced. In addition, the variations in the condensed monolayer morphology of the equimolar mixed cationic-anionic surfactants were closely related to the alkyl chain lengths of the components.  相似文献   

17.
《Liquid crystals》2001,28(3):437-444
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

18.
The spread or Langmuir monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with a double-tailed cationic surfactant, dihexadecyldimethylammonium bromide (DHDAB), at the air/water interface was analyzed with surface pressure-area isotherms, area relaxation curves, and Brewster angle microscope (BAM) images. The surface pressure-area isotherms showed that with increasing the DHDAB molar ratio, X(DHDAB), spread monolayers of HTMA-DS with DHDAB became rigid. In addition, unreasonably small limiting areas per alkyl chain of the molecules in the monolayers were found, especially at X(DHDAB)=0.5, implying the molecular loss from the monolayers at the interface. For spread HTMA-DS/DHDAB monolayers at the interface, a new IPA, DHDA-DS, was proposed to form through the displacement of HTMA(+) from HTMA-DS by DHDA(+), leaving HTMA(+) dissociated. The formation of DHDA-DS and the desorption of dissociated HTMA(+) upon the interface compression were supported by the results obtained from designed monolayer experiments with BAM observations, and were discussed by considering the hydrophilicity, packing efficiency, and headgroup charge characteristic of the species. Moreover, the area relaxation curves of spread HTMA-DS/DHDAB monolayers suggested that the formation of DHDA-DS was strongly related to the improved monolayer stability at the interface, which may have implications for the DHDAB-enhanced physical stability of catanionic vesicles composed of HTMA-DS.  相似文献   

19.
Monolayer behavior of an ion pair amphiphile (IPA), hexadecyltrimethylammonium-dodecylsulfate (HTMA-DS), with normal long-chain alcohols at the air/water interface was analyzed by the Langmuir trough technique with the Brewster angle microscope (BAM) observations, and the pronounced stability enhancement of a HTMA-DS monolayer with the presence of the alcohol additives was demonstrated. Two normal long-chain alcohols with alkyl chain lengths of C16 and C18, 1-hexadecanol (HD) and 1-octadecanol (OD), were chosen as the additives. The surface pressure-area and surface potential-area isotherms of the monolayers with BAM images of monolayer morphology implied that the addition of either HD or OD with a comparatively small head group in a double-chained HTMA-DS monolayer at the interface led to better molecular packing and attractive interaction between the molecules, showing a similar condensing effect as that observed in mixed phospholipid/cholesterol systems. Moreover, the monolayer hysteresis and relaxation curves indicated that the incorporation of the alcohols into a HTMA-DS monolayer was able to lessen the monolayer hysteresis and to enhance the monolayer stability. In comparison with OD, HD seemed more effective as an additive in stabilizing a HTMA-DS monolayer, most likely due to the relatively better molecular packing of HTMA-DS and HD molecules at the interface. It is inferred that the stability of a monolayer or vesicular bilayer structure composed of IPAs can be improved by adjusting the molecular packing/interaction with a suitable long-chain alcohol as the additive.  相似文献   

20.
Surface pressure-area, surface potential-area, and dipole moment-area isotherms were obtained for monolayers made from a partially fluorinated surfactant, (perfluorooctyl)undecyldimorpholinophosphate (F8H11DMP), dipalmitoylphosphatidylcholine (DPPC), and their combinations. Monolayers, spread on a 0.15 M NaCl subphase, were investigated at the air/water interface by the Wilhelmy method, ionizing electrode method, and fluorescence microscopy. Surface potentials were analyzed using the three-layer model proposed by Demchak and Fort. The contribution of the dimorpholinophosphate polar head group of F8H11DMP to the vertical component of the dipole moment was estimated to be 4.99 D. The linear variation of the phase transition pressure as a function of F8H11DMP molar fraction (X(F8H11DMP)) demonstrated that DPPC and F8H11DMP are miscible in the monolayer. This result was confirmed by deviations from the additivity rule observed when plotting the molecular areas and the surface potentials as a function of X(F8H11DMP) over the whole range of surface pressures investigated. Assuming a regular surface mixture, the Joos equation, which was used for the analysis of the collapse pressure of mixed monolayers, allowed calculation of the interaction parameter (xi=-1.3) and the energy of interaction (Delta epsilon =537 Jmol(-1)) between DPPC and F8H11DMP. The miscibility of DPPC and F8H11DMP within the monolayer was also supported by fluorescence microscopy. Examination of the observed flower-like patterns showed that F8H11DMP favors dissolution of the ordered LC phase domains of DPPC, a feature that may be key to the use of phospholipid preparations as lung surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号