首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transversely isotropic piezoelectric (TIP) bimaterials with an impermeable interface crack have been classified [Int. J. Frac. 119 (2003) L41] into two classes corresponding to the vanishing of the two singularity parameters or κ. It is shown in the present paper that the related eigenvalue problems for either =0 or κ=0 are not degenerate. The crack-tip generalized stress fields are obtained subsequently. A new definition of crack-tip intensity factors is presented for interface cracks in practical TIP bimaterial of practical interest. Such defined intensity factors are real numbers, which dominate the maximum crack-tip stress singularity and do not generate any phase angle change under any dimension system transformation for physical quantities.  相似文献   

2.
The singular characteristics of stress, electric displacement and magnetic induction fields near the tip of impermeable interracial cracks in two-dimensional magnetoelectroelastic bimaterials are studied using the generalized Stroh formalism. Two types of singularities are obtained: one is the oscillating singularity 1/2±iε, the other is the non-oscillating singularity 1/2±κ. It is found that the non-zero parameters ε and κ cannot coexist for one transversely isotropic MEE bimaterial, a similar result is obtained for transversely isotropic piezoelectric bimaterials.  相似文献   

3.
By modeling metal as a special piezoelectric material with extremely small piezoelec- tricity and extremely large permittivity,we have obtained the analytical solutions for an interfacial permeable crack in metal/piezoelectric bimaterials by means of the generalized Stroh formalism. The analysis shows that the stress fields near a permeable interfacial crack tip are usually with three types of singularities:r~(-1/2 iε)and r~(-1/2).Further numerical calculation on the oscillatory indexεare given for 28 types of metal/piezoelectric bimaterials combined by seven commercial piezoelectric materials: PZT-4,BaTiO_3,PZT-5H,PZT-6B,PZT-7A,P-7 and PZT-PIC 151 and four metals:copper,silver,lead and aluminum,respectively.The explicit expressions of the crack tip energy release rate(ERR)and the crack tip generalized stress intensity factors(GSIF)are obtained.It is found that both the ERR and GSIF are independent of the electric displacement loading,although they seriously depends on the mechanical loadings.  相似文献   

4.
Using the fundamental solutions for three-dimensional transversely isotropic magnetoelectroelastic bimaterials, the extended displacements at any point for an internal crack parallel to the interface in a magnetoelectroelastic bimaterial are expressed in terms of the extended displacement discontinuities across the crack surfaces. The hyper-singular boundary integral–differential equations of the extended displacement discontinuities are obtained for planar interface cracks of arbitrary shape under impermeable and permeable boundary conditions in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. An analysis method is proposed based on the analogy between the obtained boundary integral–differential equations and those for interface cracks in purely elastic media. The singular indexes and the singular behaviors of near crack-tip fields are studied. Three new extended stress intensity factors at crack tip related to the extended stresses are defined for interface cracks in three-dimensional transversely isotropic magnetoelectroelastic bimaterials. A penny-shaped interface crack in magnetoelectroelastic bimaterials is studied by using the proposed method.The results show that the extended stresses near the border of an impermeable interface crack possess the well-known oscillating singularity r?1/2±iε or the non-oscillating singularity r?1/2±κ. Three-dimensional transversely isotropic magnetoelectroelastic bimaterials are categorized into two groups, i.e., ε-group with non-zero value of ε and κ-group with non-zero value of κ. The two indexes ε and κ do not coexist for one bimaterial. However, the extended stresses near the border of a permeable interface crack have only oscillating singularity and depend only on the mechanical loadings.  相似文献   

5.
Penny-shaped crack in transversely isotropic piezoelectric materials   总被引:2,自引:0,他引:2  
Using a method of potential functions introduced successively to integrate the field equations of three-dimensional problems for transversely isotropic piezoelectric materials, we obtain the so-called general solution in which the displacement components and electric potential functions are represented by a singular function satisfying some special partial differential equations of 6th order. In order to analyse the mechanical-electric coupling behaviour of penny-shaped crack for above materials, another form of the general solution is obtained under cylindrical coordinate system by introducing three quasi-harmonic functions into the general equations obtained above. It is shown that both the two forms of the general solutions are complete. Furthermore, the mechanical-electric coupling behaviour of penny-shaped crack in transversely isotropic piezoelectric media is analysed under axisymmetric tensile loading case, and the crack-tip stress field and electric displacement field are obtained. The results show that the stress and the electric displacement components near the crack tip have (r −1/2) singularity. The project supported by the Natural Science Foundation of Shaanxi Province, China  相似文献   

6.
A permeable interface crack between elastic dielectric material and piezoelectric material is studied based on the extended Stroh’s formalism. Motivated by strong engineering demands to design new composite materials, the authors perform numerical analysis of interface crack tip singularities and the crack tip energy release rates for 35 types of dissimilar bimaterials, respectively, which are constructed by five kinds of elastic dielectric materials: Epoxy, Polymer, Al2O3, SiC, and Si3N4 and seven kinds of practical piezoelectric ceramics: PZT-4, BaTiO3, PZT-5H, PZT-6B, PZT-7A, P-7, and PZT-PIC 151, respectively. The elastic dielectric material with much smaller permittivity than commercial piezoelectric ceramics is treated as a special transversely isotropic piezoelectric material with extremely small piezoelectricity. The present investigation shows that the structure of the singular field near the permeable interface crack tip consists of three singularities: and , which is quite different from that in the impermeable interface crack. It can be concluded that different far field loading cases have significant influence on the near-tip fracture behaviors of the permeable interface crack. Based on the present theoretical treatment and numerical analysis, the electric field induced crack growth is well explained, which provides a better understanding of the failure mechanism induced from interface crack growth in elastic dielectric/piezoelectric bimaterials. The project supported by the National Natural Science Foundation of China (10572110), Doctor Foundation of the Chinese Education Ministry and Doctorate Foundation of Xi’an Jiaotong University. The English text was polished by Yunming Chen.  相似文献   

7.
Summary The problem of a penny-shaped crack in a transversely isotropic piezoelectric material loaded by both normal and tangential tractions and by electric charges is analyzed. Closed-form solutions are obtained for the full electroelastic fields as well as for the stress and electric displacement intensity factors. Solutions are also obtained for the (non-trivial) limiting case of a half-plane crack. The results are illustrated on the example of piezoceramics PZT-6B. Received 12 July 1999; accepted for publication 20 July 1999  相似文献   

8.
黄弘读  侯鹏飞 《力学季刊》2001,22(4):508-511
本文利用Chen和Shioya给出的在横观各向同性压电无限体内币形裂纹上下表面作用对称法向点力和点电荷情形下的解,结合压电材料之功的互等定,用初等函数的形式给出了在压电无限体中任意一点作用任意点力和点电荷情形下币形裂纹的张开位移,并对PZT-4压电陶瓷和非压电材料作了计算分析。  相似文献   

9.
In this paper, the problem of a crack embedded in a half-plane piezoelectric solid with traction-induction free boundary is analyzed. A system of singular integral equations is formulated for the materials with general anisotropic piezoelectric properties and for the crack with arbitrary orientation. The kernel functions developed are in complex form for general anisotropic piezoelectric materials and are then specialized to the case of transversely isotropic piezoelectric materials which are in real form. The obtained coupled mechanical and electric real kernel functions may be reduced to those kernel functions for purely elastic problems when the electric effects disappear. The system of singular integral equations is solved numerically and the coupling effects of the mechanical and electric phenomena are presented by the generalized stress intensity factors for transversely isotropic piezoelectric materials.  相似文献   

10.
纳米科技的快速发展使压电纳米结构在纳米机电系统中得到广泛应用,形成了诸如纳米压电电子学等新的研究方向.与传统的宏观压电材料相比,在纳米尺度下压电材料往往呈现出不同的力学特性,而造成这种差异的原因之一便是表面效应.本文基于Stroh公式、Barnett-Lothe积分矩阵及表面阻抗矩阵,研究计入表面效应的任意各向异性压电半空间中的表面波传播问题,导出了频散方程.针对横观各向同性压电材料,假设矢状平面平行于材料各向同性面,发现Rayleigh表面波和B-G波解耦,并得到各自的显式频散方程.结果表明,Rayleigh表面波的波速小于偏振方向垂直于表面的体波,而B-G波的波速小于偏振方向垂直于矢状平面的体波.以PZT-5H材料为例,用数值方法考察表面残余应力和电学边界条件对表面波频散特性的影响发现:表面残余应力只对第一阶Rayleigh波有明显的影响;电学开路情形的B-G波比电学闭路情形的B-G波传播快.本文工作可为纳米表面声波器件的设计或压电纳米结构的无损检测提供理论依据.  相似文献   

11.
特征值为二重根的压电材料异材界面端奇异性   总被引:1,自引:0,他引:1  
横观各向同性压电材料的特征值的不同,其一般解的形式也不同,压电结合材料问题的求解,可以归结为寻找合适的调和函数,针对材料特征值为二重根(s1^2≠s2^2=s3^2)的情况,将变量分离形式的调和函数作特征展开,推导了横观各向同性压电材料轴对称异材界面端附近的奇民异应力场和奇异电位移场,给出院 决定奇异性的特性方程,结果表明,电位移场和应力场具有相同的奇异性,奇异性次数不仅与界面端形状以及材料的机械性质有关。也与材料的压电特性有关。  相似文献   

12.
In this paper, a numerical analysis of impact interfacial fracture for a piezoelectric bimaterial is provided. Starting from the basic equilibrium equation, a dynamic electro-mechanical FEM formulation is briefly presented. Then, the path-independent separated dynamic J integral is extended to piezoelectric bimaterials. Based on the relationship of the path-independent dynamic J integral and the stress and electric displacement intensity factors, the component separation method is used to calculate the stress and electric displacement intensity factors for piezoelectric bimaterials in this finite-element analysis. The response curves of the dynamic J integral, the stress and electric displacement intensity factors are obtained for both homogeneous material (PZT-4 and CdSe) and CdSe/PZT-4 bimaterial. The influences of the piezoelectricity and the electro-mechanical coupling factor on these responses are discussed. The effects of an applied electric field are also discussed.  相似文献   

13.
Summary Utilizing the general solution of transversely isotropic piezoelectricity, the paper analyzes the problem of an inclined rigid circular flat punch indenting a transversely isotropic piezoelectric half-space. The potential theory method is employed and generalized to take into account the effect of the electric field in piezoelectric materials. Assuming that the punch is maintained at a constant electric potential, exact expressions for the elastoelectric field are derived in terms of elementary functions. It is noted that the solution corresponding to a flat circular punch centrally loaded by a concentrated force can be obtained as a special case. Received 15 December 1998; accepted for publication 9 March 1999  相似文献   

14.
研究了压电复合材料薄板中压电圆柱形夹杂与邻近宏观钝裂纹间的相互作用。重点分析了外加电场,裂尖与压电圆柱形夹杂间韧带长度对裂尖三维应力场的影响。计算结果表明:在不同的外加电场作用下,压电体不仅能改变裂尖张开应力的大小,还能改变其分布。所得结果对进一步探讨线弹性介质中裂纹的启裂控制有参考价值。  相似文献   

15.
压电板壳自由振动的三维精确分析   总被引:12,自引:0,他引:12  
本文简要评述了压电材料板壳结构的研究现状,着重介绍了近年来我们在压电板壳三维分析方面所做的工作:(1)四边简支横观各向同性压电矩形板的状态空间分析方法:(2)横观各向同性压电圆板和环板的状态空间分析方法;(3)横观各向同性压电圆柱壳和球面各向同性压电球壳耦合振动的精确分析。这些工作都直接从压电弹性力学三维基本方程出发,不引进任何变形假设,因此可作为二维简化理论和数值计算方法的校核标准。文末对今后压电材料板壳的研究方向也作了展望。  相似文献   

16.
压电复合材料中的Eshelby夹杂问题   总被引:1,自引:0,他引:1  
王旭  沈亚鹏 《力学学报》2003,35(1):26-32
通过采用解析延拓和共形映射技术,获得了压电复合材料中有关Eshelby夹杂几个典型问题的精确弹性解答,即横观各向同性压电介质中任意形状的Eshelby夹杂与圆柱异相夹杂间相互作用;一般各向异性压电介质中任意形状的Eshelby夹杂与双压电材料所形成界面的相互作用.成功求解这些问题的关健在于构造一个辅助函数.与Ru所采用的方法不同,所引入的辅助函数在无穷远点不存在极点,从而使得所展开的分析更加自然合理.分析结果清楚地揭示出Eshelby夹杂的存在对压电复合材料机电耦合响应将产生不容被忽视的影响.很典型的一个例于是当一个Eshelby椭圆夹杂与圆柱异相夹杂相互作用时,每个夹杂体内部的应力场和电场都将是不均匀的;另一个例于是位于界面附近的Eshelby夹杂有可能是界面发生损伤的一个重要原因.  相似文献   

17.
In addition to the hexagonal crystals of class 6 mm, many piezoelectric materials (e.g., BaTiO3), piezomagnetic materials (e.g., CoFe2O4), and multiferroic com-posite materials (e.g., BaTiO3-CoFe2O4 composites) also exhibit symmetry of transverse isotropy after poling, with the isotropic plane perpendicular to the poling direction. In this paper, simple and elegant line-integral expressions are derived for extended displace-ments, extended stresses, self-energy, and interaction energy of arbitrarily shaped, three-dimensional (3D) dislocation loops with a constant extended Burgers vector in trans-versely isotropic magneto-electro-elastic (MEE) bimaterials (i.e., joined half-spaces). The derived solutions can also be simply reduced to those expressions for piezoelectric, piezo-magnetic, or purely elastic materials. Several numerical examples are given to show both the multi-field coupling effect and the interface/surface effect in transversely isotropic MEE materials.  相似文献   

18.
A general solution for the stresses and displacements of a cracked sliding interface between anisotropic bimaterials subjected to uniform tensile stress at infinity is given by using the Stroh’s formulation. Horizontal and vertical opening displacements on the interface, stress intensity factors, and energy release rate are expressed in real form, which are valid for any kind of anisotropic materials including the degenerate materials such as isotropic materials. It is observed that stresses exhibit the traditional inverse square root singularities near the crack tips, and the vertical opening displacement and energy release rate are intimately related to a real parameter λ determined by the elastic constants of the anisotropic bimaterials.  相似文献   

19.
Anti-plane shear crack in a functionally gradient piezoelectric material   总被引:6,自引:0,他引:6  
The main objective of this paper is to study the singular nature of the crack-tip stress and electric displacement field in a functionally gradient piezoelectric medium having material coefficients with a discontinuous derivative. The problem is considered for the simplest possible loading and geometry, namely, the anti-plane shear stress and electric displacement in-plane of two bonded half spaces in which the crack is parallel to the interface. It is shown that the square-root singularity of the crack-tip stress field and electric displacement field is unaffected by the discontinuity in the derivative of the material coefficients. The problem is solved for the case of a finite crack and extensive results are given for the stress intensity factors, electric displacement intensity factors, and the energy release rate. Project supported by the National Natural Science Foundation of China (No. 10072041), the National Excellent Young Scholar Fund, of China (No. 10125209) and the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of MOE, P. R. C..  相似文献   

20.
Arbitrarily oriented crack near interface in piezoelectric bimaterials is considered. After deriving the fundamental solution for an edge dislocation near the interface, the present problem can be expressed as a system of singular integral equations by modeling the crack as continuously distributed edge dislocations. In the paper, the dislocations are described by a density function defined on the crack line. By solving the singular integral equations numerically, the dislocation density function is determined. Then, the stress intensity factors (SIFs) and the electric displacement intensity factor (EDIF) at the crack tips are evaluated. Subsequently, the influences of the interface on crack tip SIFs, EDIF, and the mechanical strain energy release rate (MSERR) are investigated. The J-integral analysis in piezoelectric bimaterals is also performed. It is found that the path-independent of J1-integral and the path-dependent of J2-integral found in no-piezoelectric bimaterials are still valid in piezoelectric bimaterials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号