首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Five binuclear half-sandwich cobalt complexes, [(η5-C5H4)Co(CO)I2]2SiMe2 (3), [(η5-C5H4)Co(S2C2B10H10)]2SiMe2 (4), [(η5-C5H4)]2Co22-S2C2B10H10)SiMe2 (5), [(η5-C5H3)CoI2](μ-I)[(η5-C5H3)Co(CO)I](SiMe2)2 (8), [(η5-C5H3)Co(S2C2B10H10)]2(SiMe2)2 (9), were successfully synthesized in moderate yield by the reactions of corresponding ligands, (C5H5)2SiMe2 (1) and (C5H4)2(SiMe2)2 (6), respectively. The molecular structures of 3, 5, 6, 8 and 9 was determined by X-ray crystallographic analysis, which distinctly depict various molecular structures containing the Cp rings and the metal centers with halide or 1,2-dicarba-closo-dodecaborane-1,2-dithiolato ligands. For the (η5-C5H4)2SiMe2 complexes, coordination of the fragments CpCo favors a exo conformation. With the rigid structure of the di-bridged ligand (C5H4)2(SiMe2)2, only cis isomers of the corresponding (η5-C5H3)2(Si2Me2)2 complexes are formed. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

2.
Russian Chemical Bulletin - The exchange reactions of equimolar amounts of potassium penta(benzyl)cyclopentadienide CpBn5K (CpBn5 = C5(CH2Ph)5) and SmI2(THF)2 or YCl3 afforded the corresponding...  相似文献   

3.
Reactions of [Cp*M(μ-Cl)Cl]2 (M = Ir, Rh; Cp* = η5-pentamethylcyclopentadienyl) with bi- or tri-dentate organochalcogen ligands Mbit (L1), Mbpit (L2), Mbbit (L3) and [TmMe] (L4) (Mbit = 1,1′-methylenebis(3-methyl-imidazole-2-thione); Mbpit = 1,1′-methylene bis (3-iso-propyl-imidazole-2-thione), Mbbit = 1,1′-methylene bis (3-tert-butyl-imidazole-2-thione)) and [TmMe] (TmMe = tris (2-mercapto-1-methylimidazolyl) borate) result in the formation of the 18-electron half-sandwich complexes [Cp*M(Mbit)Cl]Cl (M = Ir, 1a; M = Rh, 1b), [Cp*M(Mbpit)Cl]Cl (M = Ir, 2a; M = Rh, 2b), [Cp*M(Mbbit)Cl]Cl (M = Ir, 3a; M = Rh, 3b) and [Cp*M(TmMe)]Cl (M = Ir, 4a; M = Rh, 4b), respectively. All complexes have been characterized by elemental analysis, NMR and IR spectra. The molecular structures of 1a, 2b and 4a have been determined by X-ray crystallography.  相似文献   

4.
The DNA binding of polypyridyl (pp) (η5-C5Me5)RhIII complexes of the types [(η5-C5Me5)RhCl(pp)](CF3SO3) (2-6) (pp = bpy, phen, dpq, dppz, dppn), [(η5-C5Me5)Rh{(Me2N)2CS}(pp)](CF3SO3)2 (7-9) (pp = dpq, dppz, dppn) and [(η5-C5Me5)Rh(L)(pp)](CF3SO3) (10) (L = C6H5S) and (11) (L = C10H7S) has been studied by UV/Vis spectroscopy, circular dichroismus and viscosity measurements. Complexes 3-11 are cytotoxic towards the human MCF-7 breast and HT-29 colon cancer cell lines and exhibit IC50 values in the range 0.56-10.7 μM. Stable intercalative binding into CT-DNA is indicated for the dpq and dppz complexes by large increases ΔTm of 6-12 °C in the DNA thermal denaturation temperature for r = [complex]/[DNA] = 0.1 and by induced CD bands and large viscosity increases. In contrast, significant DNA lengthening is not observed after incubation of the biopolymer with the dppn complexes 2 and 9 at molar ratios of r < 0.08. Pronounced hypochromic shifts for the π-π transitions of the dppn ligands in the range 320-425 nm indicate the possible presence of surface stacking. The in vitro cytotoxicities of the chloro complexes 4-6 and the (Me2N)2CS complexes 7-9 are dependent on the size of the polypyridyl ligand with IC50 values decreasing in the order dpq > dppz > dppn. For instance, IC50 values of 5.3, 1.5 and 0.91 μM were determined for 7-9 against MCF-7 cells. Rapid Cl/H2O exchange leads the formation of aqua dications for 4-6, whose levels of cellular uptake and cytotoxicities are similar to those established for 7-9. Intramolecular interactions between the aromatic thiolate and dppz ligands of 10 and 11 prevent significant DNA intercalation. X-ray structural determinations have been performed for 2-7 and 11.  相似文献   

5.
The synthesis of the complex [RhCl3tpm*], (1), (tpm*= tris(3,5-dimethylpyrazolyl)methane) is reported. This complex is a suitable starting material for the synthesis of heteroleptic half-sandwich complexes: it has been used to synthesise the complexes; [RhCl(bpy)tpm*][(PF6)2][2][(PF6)2](bpy = 2,2'-bipyridyl), [RhCl(phen)tpm*][(PF6)2][3][(PF6)2]. (phen = 1,10-phenanthroline), [RhCl2(py)tpm*][(PF6)], [4][(PF6)2], (py = pyridine), and[RhCl(py)2tpm*][(PF6)2], [5][(PF6)2]. The structures of [2][(PF6)2], [33][(PF6)2], [4][(PF6)2], and [5][(PF6)2] have been determined by X-ray crystallography. The electrochemical and photophysical properties of these new compounds have also been investigated.  相似文献   

6.
New cyclopentadienyl derivatives of rhodium COD complexes [Cp*=C5H4COOCH2CHCH2 (1); C5H4CH2CH2CHCH2 (2); C5H(i-C3H7)4 (3)] and carbonyl complex [Cp*=C5H(i-C3H7)4 (4)] were synthesized from [RhCl(COD)]2 and [RhCl(CO)2]2. 1, 2 and 3 oxidized by iodine gave iodine bridged dimers 5, 6 and 7, respectively. Triphenyl phosphine, carbon monoxide and carbon disulfide molecules broke down the iodine bridged structure easily and produced monomer products Cp*RhI2L [Cp*=C5H4COOCH2CHCH2, L=CS2 (8); L=PPh3 (9). Cp*=C5H(i-C3H7)4, L=CO (10)]. All of these new compounds were characterized by elemental analysis, 1H NMR, IR, UV-Vis and mass spectroscopy. The crystal structure of 1 was solved in the triclinic space group with one molecule in the unit cell, the dimensions of which are a=7.082(9) Å, b=8.392(3) Å, c=13.889(5) Å, α=101.19(3)°, β=99.06(6)°, γ=105.11(5)°, and V=763(1) Å3. The crystal structure of 3 was solved in the orthorhombic space group Pn21a with four molecules in the unit cell, the dimensions of which are a=9.748(3) Å, b=16.054(5) Å, and V=2319(1) Å3. Least squares refinement leads to values for the conventional R1 of 0.0251 for 1 and 0.0558 for 3, respectively. Compared to that in 1, a shorter metal-ligand bond length in 3 was observed and this is attributed to the rich electron density on Rh(I) metal center piled up by the C5H(i-C3H7)4 ligand.  相似文献   

7.
The dimeric rhodium(II) complexes [Rh2(leu)4(H2O)2]- (ClO4)4 and [Rh2(pro)4(H2O)2](ClO4)4 have been prepared and characterized by elemental analyses, i.r., u.v.–vis. and 1H-n.m.r. spectroscopy. The amino acid molecules are coordinated as bridging ligands via their carboxylato groups. Cyclic voltammetry in DMF has shown that the complexes undergo a quasi-reversible reduction to yield dimers containing a Rh 2 3+ core. Oxidation processes within the 0–1.5V range were not observed.  相似文献   

8.
[(η5-C5H5)ZrCl25-C5H4)CMe2(C5H5)] reacted with Co2(CO)8 to produce a heterodinuclear Zr(IV)-Co(I) complex [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)Co(CO)2] (3). Complex 3 underwent oxidative addition of I2 to give [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(CO)] (4) having Zr(IV) and Co(III) centers. The carbonyl ligand of 4 was easily replaced with P(OMe)3 and PPh3 to afford [(η5-C5H5)ZrCl25-C5H4)CMe25-C5H4)CoI2(L)] (5: L = P(OMe)3, 6: L = PPh3). Structures of 5 and 6 were determined by X-ray crystallography. These Zr-Co heterodinuclear complexes catalyzed polymerization of ethylene and propylene.  相似文献   

9.
A series of novel half-sandwich M(I) and M(III) complexes (M = Co, Rh) bearing the N-heterocyclic carbene ligand 1,3-dimesitylimidazol-2-ylidene (IMes) have been prepared and characterized. Thus, (eta5-C(5)R(5))M(IMes)(C(2)H(4))(M = Co, Rh; R = H, Me) were obtained from the corresponding bis(ethene) complexes (eta5-C(5)R(5))M(C(2)H(4))(2), except for CpRh(IMes)(C(2)H(4)) which was prepared via the novel 16-electron Rh(I) compound Rh(IMes)(C(2)H(4))(2)Cl. The carbonyl compounds (eta5-C(5)R(5))Co(IMes)(CO)(R = H, Me) were synthesized by thermal CO substitution of (eta5-C(5)R(5))Co(CO)(2). A diamagnetic, apparently 16-electron Co(III) compound [CpCo(IMes)I](+)[I(3)(-)] was obtained from CpCo(IMes)(CO) and I(2). Finally, Co(III) and Rh(III) complexes CpCo(IMes)Me(2) and Cp*Rh(IMes)Me(2) were prepared by methylation of [CpCo(IMes)I](+)[I(3)(-)], and ligand exchange at Cp*Rh(Me(2)SO)Me(2), respectively. The molecular structures of CpCo(IMes)(CO), CpRh(IMes)(C(2)H(4)), Cp*Rh(IMes)(C(2)H(4)), and Cp*Rh(IMes)Me(2) were determined by single crystal X-ray diffraction. Steric and electronic factors imposed by the strongly donating and sterically demanding IMes ligand are discussed on the basis of X-ray crystallographic, NMR, and IR spectroscopic analyses. Very poor correlations are found between values for (1)J(Rh-C(carbene)) and dRh-C(carbene) data for Rh(i) N,N-heterocyclic carbene complexes including literature data and this work.  相似文献   

10.
Half-sandwich organorhodium(III) complexes of the type [(η5-C5Me5)RhCl(pp)] (CF3SO3) containing polypyridyl ligands (pp) represent a promising class of cytostatic agents. Replacement of the polypyridyl ligands of complexes 1 (pp = phen) and 6 (pp = dppz) by methyl-substituted derivatives in 2-5 (pp = 4-Mephen, 5-Mephen, 4,7-Me2phen, 5,6-Me2phen) and 7 (pp = Me2dppz) leads to a significant improvement in their antiproliferative activity towards human MCF-7 and HT-29 cancer cells. For instance, the IC50 value towards HT-29 cells decreases from 4.3 ± 0.2 μM for 6 to 0.98 ± 0.49 μM for complex 7. In contrast, no activity (IC50 > 100 μM) was observed for the HOOC and n-BuNHCO substituted dppz complexes 8 and 9. UV/vis, CD and NMR spectra for mixtures of complexes 7-9 with CT DNA were in accordance with intercalation of the substituted dppz ligands between the base pairs of the double helix and direct evidence for this binding mode was also provided by a 2D NOESY study for complex 7 with the hexanucleotide d(5′-CGTCGG-3′). Each of the methyl-substituted phen complexes 2-5 is significantly more active towards immortalized HEK-293 cells (IC50 values 0.40 ± 0.02 to 0.94 ± 0.02 μM) than towards the cancer cells. Flow cytometric measurements of DNA fragmentation in BJAB cells following an incubation period of 72 h with 1, 5 and 6 indicate that the complexes induce specific apoptotic cell death in the non-adherent lymphoma cells.  相似文献   

11.
Cyclopentadienyl cobalt complexes (η5‐C5H4R) CoLI2 [L = CO,R=‐COOCH2CH=CH2 (3); L=PPh3, R=‐COOCH2‐CH=CH2 (6); L=P(p‐C6H4O3)3, R = ‐COOC(CH3) = CH2 (7), ‐COOCH2C6H5 (8), ‐COOCH2CH = CH2 (9)] were prepared and characterized by elemental analyses, 1H NMR, ER and UV‐vis spectra. The reaction of complexes (η5‐C5H4R)CoLI2 [L= CO, R= ‐COOC(CH3) = CH2 (1), ‐COOCH2C6H5(2); L=PPh3, R=‐COOC (CH3) = CH2 (4), ‐COOCH2C6H5 (5)] with Na‐Hg resulted in the formation of their corresponding substituted cobaltocene (η5‐C5H4R)2 Co[R=‐COOC(CH3) = CH2 (10), ‐COOCH2C6H5 (11)]. The electrochemical properties of these complexes 1–11 were studied by cyclic voltammetry. It was found that as the ligand (L) of the cobalt (III) complexes changing from CO to PPh3 and P(p‐tolyl)3, their oxidation potentials increased gradually. The cyclic voltammetry of α,α′‐substituted cobaltocene showed reversible oxidation of one electron process.  相似文献   

12.
The reaction of the dilithium salt Li2[Me2Si(C5H4)(C5Me4)] (2) of Me2Si(C5H5)(C5HMe4) (1) with [MCl(C8H12)]2 (M=Rh, Ir) and [RhCl(CO)2]2 afforded homodinuclear metal complexes [{Me2Si(η5-C5H4)(η5-C5Me4)}{M(C8H12)}2] (M=Rh: 3; M=Ir: 4) and [{Me2Si(η5-C5H4)(η5-C5Me4)}Rh2(CO)2(μ-CO)] (5), respectively. The reaction of 2 with RhCl(CO)(PPh3)2 afforded a mononuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}Rh(CO)PPh3] (6) leaving the C5HMe4 moiety intact. Taking advantage of the difference in reactivity of the two cyclopentadienyl moieties of 2, heterodinuclear complexes were prepared in one pot. Thus, the reaction of 2 with RhCl(CO)(PPh3)2, followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded a homodinuclear metal complex [Rh(CO)PPh3{(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (7) consisting of two rhodium centers with different ligands and a heterodinuclear metal complex [Rh(CO)(PPh3){(η5-C5H4)SiMe25-C5Me4)}Ir(C8H12)] (8). The successive treatment of 2 with [IrCl(C8H12)]2 and [RhCl(C8H12)]2 provided heterodinuclear metal complex [Ir(C8H12){(η5-C5H4)SiMe25-C5Me4)}Rh(C8H12)] (9). The reaction of 2 with CoCl(PPh3)3 and then with PhCCPh gave a mononuclear cobaltacyclopentadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(CPhCPhCPhCPh)(PPh3)] (10). However, successive treatment of 2 with CoCl(PPh3)3, PhCCPh and [MCl(C8H12)]2 in this order afforded heterodinuclear metal complexes [M(C8H12){(η5-C5H4)SiMe25-C5Me4)}Co(η4-C4Ph4)] (M=Rh: 11; M=Ir: 12) in which the cobalt center was connected to the C5Me4 moiety. Although the heating of 10 afforded a tetraphenylcyclobutadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(η4-C4Ph4)] (13), in which the cobalt center was connected to the C5H4 moiety, simple heating of the reaction mixture of 2, CoCl(PPh3)3 and PhCCPh resulted in the formation of a tetraphenylcyclobutadiene complex [{Me2Si(C5H5)(η5-C5Me4)}Co(η4-C4Ph4)] (14), in which the cobalt center was connected to the C5Me4 moiety. The mechanism of the cobalt transfer was suggested based on the electrophilicity of the formal trivalent cobaltacyclopentadiene moiety. In the presence of 1,5-cyclooctadiene, the reaction of 2 with CoCl(PPh3)3 provided a mononuclear cobalt cyclooctadiene complex [{Me2Si(C5Me4H)(η5-C5H4)}Co(C8H12)] (15). The reaction of 15 with n-BuLi followed by the treatment with [MCl(C8H12)]2 (M=Rh, Ir) afforded the heterodinuclear metal complexes of [Co(C8H12){(η5-C5H4)SiMe25-C5Me4)}M(C8H12)] (M=Rh: 16; M=Ir: 17). Treatment of 6 with Fe2(CO)9 at room temperature afforded a heterodinuclear metal complex [{Me2Si(C5HMe4)(η5-C5H4)}{Rh(PPh3)(μ-CO)2Fe(CO)3}] (18) in which the C5HMe4 moiety was kept intact. Treatment of dinuclear metal complex 5 with Fe2(CO)9 afforded a heterotrinuclear metal complex [{(η5-C5H4)SiMe25-C5Me4)}{Rh(CO)Rh(μ-CO)2Fe(CO)3}] (19) having a triangular metal framework. The crystal and molecular structures of 3, 11, 12, 18 and 19 have been determined by single-crystal X-ray diffraction analysis.  相似文献   

13.
The DNA binding characteristics of mixed ligand complexes of the type [Co(en)2(L)]Br3 where en = N,N′-ethylenediamine and L = 1,10-phenanthroline (phen), 2,2′-bipyridine (bpy), 1,10-phenanthroline-5,6-dione (phendione), dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been investigated by absorption titration, competitive binding fluorescence spectroscopy and viscosity measurements. The order of intercalative ability of the coordinated ligands is dppz > phen > phendione > bpy in this series of complexes.  相似文献   

14.
Sulfur and oxygen functionalized cyclopentandienyl half-sandwich cobalt dicarbonyl complexes [η5-C5H4(CH2)2SCH2CH3]Co(CO)2 (3) and [η5-C5H4(CH2)2OCH3]Co(CO)2 (7) were prepared. Oxidation of 3 or 7 with I2 led to formation of 18-electron complexes [η5-C5H4(CH2)2SCH2CH3]CoI2 (4) and [η5-C5H4(CH2)2OCH3]Co(CO)I2 (8). The reactions of diiodide complex (4) with dilithium 1,2-dicarba-closo-dodecaborane(12)-1,2-dichalcogenolates [(THF)3LiE2C2B10H10Li(THF)]2 [E=S (1a), Se (1b)] afforded 18-electron mononuclear complexes [η5-C5H4(CH2)2SCH2CH3]Co(E2C2B10H10) [E=S (5a), Se (5b)] in which sulfur atoms of side-chain were attached via an intramolecular coordination. Complex 7 reacted with 1a and 1b to give the binuclear complexes {[η5-C5H4(CH2)2OCH3]Co(E2C2B10H10)}2 [E=S (10a), Se (10b)]. The molecular structures of 5a and 10b were determined by X-ray crystallographic analysis. According to the X-ray structure analyses, 10b contains two o-carborane diselenolate bridges, and each CpCo fragment is attached to one terminal and two bridging selenolato ligands. The central Co2Se2 four-membered ring is planar, and the direct metal-metal interaction is absent.  相似文献   

15.
Binuclear complexes of cobalt(III) have been prepared with 3,3',4,4'-tetrahydroxy-benzaldazine (H4thB), 3,3',4,4'-tetrahydroxy-5,5'-dimethoxybenzaldazine (H4thM), and 3,3',4,4'-tetrahydroxydimethylbenzaldazine (H4thA) as bis(catecholate) ligands that link metal ions separated by 16 A through a conjugated bridge. In one case, [Co2(bpy)4(thM)]2+, stereodynamic properties observed in solution by 1H NMR are associated with valence tautomerism, with formation of a labile hs-Co(II) species by electron transfer from the catecholate regions of the bridge. Electrochemical oxidation of the complexes occurs at the bridges as two closely spaced one-electron couples. Chemical oxidation of [Co2(bpy) 4(thB)]2+ with Ag+ is observed to occur as a two-electron process forming [Co2(bpy) 4(thB(SQ,SQ))]4+. Attempted crystallization in the presence of air was observed to result in formation of the [Co(bpy)2(BACat)]+ (H2BACat, 3,4-dihydroxybenzaldehyde) cation by aerobic oxidation. Structural characterization is provided for the H4thM ligand and [Co(bpy)2(BACat)](BF4).  相似文献   

16.
Neutral trinuclear metallomacrocycles, [Cp*RhCl(μ-4-PyS)]3 (3) and [Cp*IrCl(μ-4-PyS)]3 (4) [Cp* = pentamethylcyclopentadienyl, 4-PyS = 4-pyridinethiolate], have been synthesized by self-assembly reactions of [Cp*RhCl2]2 (1) and [Cp*IrCl2]2 (2) with lithium 4-pyridinethiolate, respectively. In situ reaction of complex 3 with three equivalent of lithium 4-pyridinethiolate resulted in [Cp*Rh(μ-4-PyS)(4-PyS)]3 (5) containing both skeleton and pendent 4-PyS groups. Chelating coordination of 2-pyridinethiolate broke down the triangular skeleton to give mononuclear metalloligands Cp*Rh(2-PyS)(4-PyS) (6) and Cp*Ir(2-PyS)(4-PyS) (7) [2-PyS = 2-pyridinethiolate], which could also be synthesized from Cp*RhCl(2-PyS) (10) and Cp*IrCl(2-PyS) (11) with lithium 4-pyridinethiolate. The coordination reactions of 6 with complexes 1 and 2 gave dinuclear complexes [Cp*Rh(2-PyS)(μ-4-PyS)][Cp*RhCl2] (8) and [Cp*Rh(2-PyS)(μ-4-PyS)][Cp*IrCl2] (9), respectively. Molecular structures of 3, 4, 6 and 11 were determined by X-ray crystallographic analysis. All the complexes have been well characterized by elemental analysis, NMR and IR spectra.  相似文献   

17.
18.
Summary A hydroxocobalt(III) complex (1a), has been obtained by reaction of bis(dehydroacetato)ethylenediimine (H2dhaen) with cobalt(II) hydroxide or acetate in the presence of air. Addition of a second complexing agent leads to the formation of a series of mixed-ligand complexes (2)-(26) having either the trans- or cis- configuration. In the cis- complexes, the quadridentate ligand dhaen adopts a nonplanar conformation. Configurations are distinguishable from characteristic differences in the electronic and n.m.r. spectra.  相似文献   

19.
20.
The electronic spectra of solid MgCp2 (Cp = cyclopentadienyl) show features which indicate the presence of intramolecular interligand interactions. The fluorescence of MgCp2 (λmax = 363 nm) undergoes a considerable Stokes shift which is apparently caused by a bonding attraction between both Cp rings in the excited state. An additional phosphorescence of the (Cp)2 fragment (λmax = 535 nm) appears at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号