首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA damages induced by oxidative intrastrand cross-links have been the subject of intense research during the past decade. Yet, the currently available experimental protocols used to isolate such lesions only allow to get structural information about linked dinucleotides. The detailed structure of the damaged DNA macromolecule has remained elusive. In this study we generated in silico the most frequent oxidative intrastrand cross-link adduct, G[8,5-Me]T, embedded in a solvated DNA dodecamer by means of quantum mechanics/molecular mechanics (QM/MM) Car-Parrinello simulations. The free energy of activation required to bring the reactant close together and to form the C-C covalent-bond is estimated to be ~10 kcal/mol. We observe that the G[8,5-Me]T tandem lesion is accommodated with almost no perturbation of the Watson-Crick hydrogen-bond network and induces bend and unwinding angles of ~20° and 8°, respectively. This rather small structural distortion of the DNA macromolecule compared to other well characterized intrastrand cross-links, such as cyclobutane pyrimidines dimers or cisplatin-DNA complex adduct, is a probable rationale for the known lack of efficient repair of oxidative damages.  相似文献   

2.
3.
We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
We present first principles calculations of the NMR solvent shift of adenine in aqueous solution. The calculations are based on snapshots sampled from a molecular dynamics simulation, which were obtained via a hybrid quantum-mechanical/mechanical modeling approach, using an all-atom force field (TIP3P). We find that the solvation via the strongly fluctuating hydrogen bond network of water leads to nontrivial changes in the NMR spectra of the solutes regarding the ordering of the resonance lines. Although there are still sizable deviations from experiment, the overall agreement is satisfactory for the 1H and 15N NMR shifts. Our work is another step toward a realistic first-principles prediction of NMR chemical shifts in complex chemical environments.  相似文献   

5.
A technique for implementing the integrated molecular orbital and molecular mechanics (IMOMM) methodology developed by Maseras and Morokuma that is used to perform combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, frequency calculations and simulations of macromolecules including explicit solvent is presented. Although the IMOMM methodology is generalized to any coordinate system, the implementation first described by Maseras and Morokuma requires that the QM and MM gradients be transformed into internal coordinates before they are added together. This coordinate transformation can be cumbersome for macromolecular systems and can become ill-defined during the course of a molecular dynamics simulation. We describe an implementation of the IMOMM method in which the QM and MM gradients are combined in the cartesian coordinate system, thereby avoiding potential problems associated with using the internal coordinate system. The implementation can be used to perform combined QM/MM molecular dynamics simulations and frequency calculations within the IMOMM framework. Finally, we have examined the applicability of thermochemical data derived from IMOMM framework. Finally, we have examined the applicability of thermochemical data derived from IMOMM frequency calculations. Received: 11 May 1998 / Accepted: 14 August 1998 / Published online: 16 November 1998  相似文献   

6.
Self-consistent charge density functional tight-binding (SCC-DFTB) is a semiempirical method based on density functional theory and has in many cases been shown to provide relative energies and geometries comparable in accuracy to full DFT or ab initio MP2 calculations using large basis sets. This article shows an implementation of the SCC-DFTB method as part of the new QM/MM support in the AMBER 9 molecular dynamics program suite. Details of the implementation and examples of applications are shown.  相似文献   

7.
We report an enhanced sampling technique that allows to reach the multi‐nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid–vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall‐clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc.  相似文献   

8.
9.
The structural and dynamical properties of NO3- in dilute aqueous solution have been investigated by means of two combined quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulations, namely HF/MM and B3LYP/MM, in which the ion and its surrounding water molecules were treated at HF and B3LYP levels of accuracy, respectively, using the DZV+ basis set. On the basis of both HF and B3LYP methods, a well-defined first hydration shell of NO3- is obtainable, but the shell is quite flexible and the hydrogen-bond interactions between NO3- and water are rather weak. With respect to the detailed analysis of the geometrical arrangement and vibrations of NO3-, the experimentally observed solvent-induced symmetry breaking of the ion is well reflected. In addition, the dynamical information, i.e., the bond distortions and shifts in the corresponding bending and stretching frequencies as well as the mean residence time of water molecules surrounding the NO3- ion, clearly indicates the "structure-breaking" ability of this ion in aqueous solution. From a methodical point of view it seems that both the HF and B3LYP methods are not too different in describing this hydrated ion by means of a QM/MM simulation. However, the detailed analysis of the dynamics properties indicates a better suitability of the HF method compared to the B3LYP-DFT approach.  相似文献   

10.
The mechanism of the hydrolysis reaction of the unprotonated methyl triphosphate (MTP) ester in water clusters has been modeled. The effective fragment potential based quantum mechanical-molecular mechanical (QM/MM) approach has been applied in the simulations. It is shown that the minimum energy reaction path is consistent with an assumption of a two-step dissociative-type process similar to the case of the guanosine triphosphate (GTP) hydrolysis in the Ras-GAP protein complex (Grigorenko, B. L.; Nemukhin, A. V.; Topol, I. A.; Cachau, R. E.; Burt, S. K. Proteins: Struct., Funct., Bioinf. 2005, 60, 495). At the first stage, a unified action of environmental molecular groups and the catalytic water molecule leads to a substantial spatial separation of the gamma-phosphate group from the rest of the molecule. At the second stage, inorganic phosphate H2PO4- is formed from water and the metaphosphate anion PO3- through the chain of proton transfers along hydrogen bonds. The estimated activation barriers for MTP in aqueous solution at both stages (20 and 14 kcal/mol) are substantially higher than the corresponding barriers for the GTP hydrolysis in the protein.  相似文献   

11.
The Cope elimination reactions for threo- and erythro-N,N-dimethyl-3-phenyl-2-butylamine oxide have been investigated using QM/MM calculations in water, THF, and DMSO. The aprotic solvents provide up to million-fold rate accelerations. The effects of solvation on the reactants, transition structures, and rates of reaction are elucidated here using two-dimensional potentials of mean force (PMF) derived from free-energy perturbation calculations in Monte Carlo simulations (MC/FEP). The resultant free energies of activation in solution are in close agreement with experiment. Ab initio calculations at the MP2/6-311+G-(2d,p) level using the PCM continuum solvent model were also carried out; however, only the QM/MM methodology was able to reproduce the large rate increases in proceeding from water to the dipolar aprotic solvents. Solute-solvent interaction energies and radial distribution functions are also analyzed and show that poorer solvation of the reactant in the aprotic solvents is primarily responsible for the observed rate enhancements. It is found that the amine oxide oxygen is the acceptor of three hydrogen bonds from water molecules for the reactant but only one to two weaker ones at the transition state. The overall quantitative success of the computations supports the present QM/MM/MC approach, featuring PDDG/PM3 as the QM method.  相似文献   

12.
Born‐Oppenheimer ab initio QM/MM molecular dynamics simulation with umbrella sampling is a state‐of‐the‐art approach to calculate free energy profiles of chemical reactions in complex systems. To further improve its computational efficiency, a mass‐scaling method with the increased time step in MD simulations has been explored and tested. It is found that by increasing the hydrogen mass to 10 amu, a time step of 3 fs can be employed in ab initio QM/MM MD simulations. In all our three test cases, including two solution reactions and one enzyme reaction, the resulted reaction free energy profiles with 3 fs time step and mass scaling are found to be in excellent agreement with the corresponding simulation results using 1 fs time step and the normal mass. These results indicate that for Born‐Oppenheimer ab initio QM/MM molecular dynamics simulations with umbrella sampling, the mass‐scaling method can significantly reduce its computational cost while has little effect on the calculated free energy profiles. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   

13.
We report the development of adaptive QM/MM computer simulations for electrochemistry, providing public access to all sources via the free and open source software development model. We present a modular workflow‐based MD simulation code as a platform for algorithms for partitioning space into different regions, which can be treated at different levels of theory on a per‐timestep basis. Currently implemented algorithms focus on targeting molecules and their solvation layers relevant to electrochemistry. Instead of using built‐in forcefields and quantum mechanical methods, the code features a universal interface, which allows for extension to a range of external forcefield programs and programs for quantum mechanical calculations, thus enabling the user to readily implement interfaces to those programs. The purpose of this article is to describe our codes and illustrate its usage. © 2016 Wiley Periodicals, Inc.  相似文献   

14.
15.
We have investigated the structure and the vibrational spectrum of peroxynitrite anion in aqueous solution by means of combined quantum-classical (QM/MM) molecular dynamics simulations. In our QM/MM scheme, the reactant was modeled using density functional theory with a Gaussian basis set and the solvent was described using the mean-field TIP4P and the polarizable TIP4P-FQ force fields. The choice of basis sets, functionals and force field parameters has been validated by performing calculations on isolated peroxynitrite and on small peroxynitrite-water complexes. Poor values for isolated peroxynitrite structural properties and vibrational frequencies are found for most ab initio methods, particularly regarding the ON-OO(-) bond distance and the harmonic stretching frequency, probably due to the singlet-triplet instability found in the HF wave function. On the other hand, DFT methods yield results in better agreement with high level CCSD(T) ab initio calculations. We have computed the vibrational spectrum for aqueous peroxynitrite by calculating the Fourier transform of the velocity autocorrelation function extracted from the QM-MM molecular dynamics simulations. Our computational scheme, which allows for the inclusion of both anharmonicity and solvent effects, is able to clarify previous discrepancies regarding the experimental spectra assignments and to shed light on the subtle interplay between solvation and peroxynitrite structure and properties.  相似文献   

16.
Combined ab initio quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations, including only the first and the first and second hydration shells in the QM region, were performed for TiIII in aqueous solution. The hydration structure of TiIII is discussed in terms of radial distribution functions, coordination-number distributions and several angle distributions. Dynamical properties, such as librational and vibrational motions and TiIII-O vibrations, were evaluated. A fast dynamical Jahn-Teller effect of TiIII(aq) was observed in the QM/MM simulations, in particular when the second hydration shell was included into the QM region. The results justify the computational effort required for the inclusion of the second hydration shell into the QM region and show the importance of this effort for obtaining accurate hydration-shell geometries, dynamical properties, and details of the Jahn-Teller effect.  相似文献   

17.
Dinuclear Pt-containing compounds might be used to overcome the intrinsic and acquired cell resistance of widely used anticancer drugs such as cisplatin. Recently, the complexes [[cis-Pt(NH3)2]2(mu-OH)(mu-pz)](NO3)2 (with pz = pyrazolate) (1), [[cis-Pt(NH3)2]2(mu-OH)(mu-1,2,3-ta-N(1),N(2))](NO3)2 (with ta = 1,2,3-triazolate) (2), and the binding of 1 to d(CpTpCpTpG*pG*pTpCpTpCp) have been characterized. Here we provide the structural and electronic properties of the free drugs, of the intermediates of binding to guanine bases, and of the products, by performing DFT calculations. Our results show that in 2 an isomerization of the Pt-coordination sphere from N(2) to N(3) of the triazolate unit determines a thermodynamic stabilization of approximately 20 kcal/mol as a consequence of the formation of an allylic structure. In addition, hybrid quantum-classical molecular dynamics simulations of 1 and 2 DNA adducts have shed light on the structural distortions that the drugs induce to the DNA duplex. Our calculations show that the rise and the tilt of the two adjacent guanines are identical in the presence of 1 and 2, but they markedly increase when 2 binds in the N(1),N(3) fashion. In addition, the drugs do not provoke any kink upon binding to the double-stranded DNA, suggesting that they may act with a mechanism different than that of cisplatin. The accuracy of our calculations is established by a comparison with the NMR data for the corresponding complex with 1.  相似文献   

18.
In this work, the GLOB model, an effective and reliable computational approach well suited for ab initio and QM/MM molecular dynamics simulations of complex molecular systems in solution, has been applied to study two representative open-shell systems, the cobalt(II) ion and the glycine radical in aqueous solution, with special reference to their structural and magnetic properties. The main structural features of the solvent cage around the cobalt ion and the hydrogen bonding patterns around the neutral and zwitterionic forms of the glycine radical have been investigated in some detail. The general good agreement with experiments supports the use of the present model to investigate more challenging and biological/technological relevant open-shell systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号