首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic covalent synthesis, structure and conformational dynamics of a chiral polyimine nanocapsule 1a are reported. Reaction of four tetraformyl cavitands and eight H(2)N(CH(2))(2)NH(2) yields quantitatively 1a, which has a compact, asymmetrically folded, pseudo-C(2)-symmetric structure, as determined by X-ray crystallography, and encapsulates four CHCl(3) and three CH(3)OH guests in the solid state. In solution, 1a enantiomerizes by passing over a barrier of ΔG(298)(double dagger) = 21.5 ± 0.7 kcal mol(-1) via a refolding process.  相似文献   

2.
The solvent effects on the condensation reaction between tetraformylcavitand 2 and ethylene-1,2-diamine 3 are reported. Earlier, it was found that the trifluoroacetic acid-catalyzed condensation of 2 and 2 equiv of 3 in CHCl(3) provides in 82% yield an octahedral nanocage 1 composed of 6 cavitands that are linked together by 12 -CH=N-CH(2)CH(2)-N=CH- linker groups (Liu, X.; Liu, Y.; Li, G.; Warmuth, R. Angew. Chem., Int. Ed. 2006, 45, 901). In tetrahydrofuran, the same reactants yield a tetrameric nanocage 4 (35% yield), which resembles a distorted tetrahedron built up from four cavitands that occupy the apexes. Each cavitand is doubly linked to one other cavitand and singly linked to the other two cavitands via -CH=N-CH(2)CH(2)N=CH- connectors. In CH(2)Cl(2), the reaction between 8 2 and 16 3 yields a square antiprismatic nanocage 5 (65% yield), in which each cavitand occupies one of the eight corners and is connected to four neighboring cavitands via -CH=N-CH(2)CH(2)-N=CH- linkers. Nanocage 5 is also the main product in CH(2)ClCH(2)Cl (26% yield) and CHCl(2)CHCl(2) (33% yield). Reduction of all imine bonds in 4 and 5 yields polyaminonanocontainers 7 and 8, respectively, which were isolated as trifluoroacetate salts. Contrary to the formation of larger capsules composed of four, six, or eight cavitands in the reaction between 2 and 3, the acid-catalyzed reaction of 2 with 2 equiv of H(2)N-X-NH(2) (X = (CH(2))(n)(=3,4,5), 1,3-C(6)H(4), 1,4-(CH(2))(2)C(6)H(4), or 1,3-(CH(2))(2)C(6)H(4)) quantitatively yields octaiminohemicarcerands 9-14, in which two cavitands are connected with four -CH=N-X-N=CH- linkers. The outcomes of these condensation reactions are rationalized with the different diamine structures and the relative orientation of cavitands in 1, 4, 5, and 9-14.  相似文献   

3.
The synthesis and characterization of the first disulfide-linked and C5-symmetric carceplex.(guests)2 using the recently described [5]cavitands as building blocks is reported. The solution behavior of the new carceplexes was explored by 1D NOSEY (EXSY) experiments. The disulfides have unusually high energy barriers to interconversion due to their cooperativity. The guests (2 DMF or 2 DMA) reside in an unusual orientation in parallel planes that are perpendicular to the principal axis of the host.  相似文献   

4.
Robinson annulation of coprostanone (1) at the 2,3- and 3,4-positions gave two pentacyclic enones (7 and 10) that contain A/B-cis-fused ring junctions. Reduction of these enones gave the pentacyclic steroidal ketones 2 alpha,3beta- (8) and 2 alpha,3 alpha-(3'-oxocyclohexano)-5 beta-cholestane (9) and 4 alpha,3beta- (11) and 4 alpha,3 alpha-(3'-oxocyclohexano)-5 beta-cholestane (12). The structures of compounds 8, 9, and 11 were unambiguously established by X-ray analysis. TiCl4-promoted trimerization of compounds 8 and 11 gave the "supertristeroids" 4 and 5, respectively: large (C93) chiral, hydrocarbon clefts with C3-symmetric pockets approximately 12 A in diameter.  相似文献   

5.
The present article reports the spectroscopic investigations on non-covalent interaction of fullerenes C(60) and C(70) with a macrocyclic receptor molecule, namely, 1,3,5,7-tetrahomo-p-tert-butylcalix[8]arene (1) in toluene. Jobs method of continuous variation reveals 1:1 stoichiometry for the fullerene complexes of 1. The most fascinating feature of the present study is that 1 binds selectively C(60) compared to C(70) as obtained from binding constant (K) data of C(60)-1 (K(C60-1)) and C(70)-1 (K(C70-1)) complexes which are enumerated to be 265,000 dm(3) mol(-1) and 63,43 dm(3) mol(-1), respectively, and selectivity in binding (K(C60-1)/K(C70-1)) is estimated to be 4.18 as obtained from UV-Vis study. Steady state fluorescence studies reveal quenching of fluorescence of 1 in presence of fullerenes and the K value of the C(60)-1 and C(70)-1 complexes are estimated to be 80,760 and 68,780 dm(3) mol(-1), respectively, with selectivity in binding (K(C60-1)/K(C70-1)) ~1.18. (1)H NMR analysis provides very good support in favor of strong binding between C(60) and 1. The high value of K value for C(60)-1 complex indicates that 1 forms an inclusion complex with C(60).  相似文献   

6.
Heating a mixture of Ir(4)(CO)(9)(PPh(3))(3) (1) and 2 equiv of C(60) in refluxing chlorobenzene (CB) affords a "butterfly" tetrairidium-C(60) complex Ir(4)(CO)(6){mu(3)-kappa(3)-PPh(2)(o-C(6)H(4))P(o-C(6)H(4))PPh(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (3, 36%). Brief thermolysis of 1 in refluxing chlorobenzene (CB) gives a "butterfly" complex Ir(4)(CO)(8){mu-k(2)-PPh(2)(o-C(6)H(4))PPh}{mu(3)-PPh(2)(eta(1):eta(2)-o-C(6)H(4))} (2, 64%) that is both ortho-phosphorylated and ortho-metalated. Interestingly, reaction of 2 with 2 equiv of C(60) in refluxing CB produces 3 (41%) by C(60)-assisted ortho-phosphorylation, indicating that 2 is the reaction intermediate for the final product 3. On the other hand, reaction of Ir(4)(CO)(8)(PMe(3))(4) (4) with excess (4 equiv) C(60) in refluxing 1,2-dichlorobenzene, followed by treatment with CNCH(2)Ph at 70 degrees C, affords a square-planar complex with two C(60) ligands and a face-capping methylidyne ligand, Ir(4)(CO)(3)(mu(4)-CH)(PMe(3))(2)(mu-PMe(2))(CNCH(2)Ph)(mu-eta(2):eta(2)-C(60))(mu(4)-eta(1):eta(1):eta(2):eta(2)-C(60)) (5, 13%) as the major product. Compounds 2, 3, and 5 have been characterized by spectroscopic and microanalytical methods, as well as by single-crystal X-ray diffraction studies. Cyclic voltammetry has been used to examine the electrochemical properties of 2, 3, 5, and a related known "butterfly" complex Ir(4)(CO)(6)(mu-CO){mu(3)-k(2)-PPh(2)(o-C(6)H(4))P(eta(1)-o-C(6)H(4))}(mu(3)-eta(2):eta(2):eta(2)-C(60)) (6). These cyclic voltammetry data suggest that a C(60)-mediated electron transfer to the iridium cluster center takes place for the species 3(3)(-) and 6(2)(-) in compounds 3 and 6. The cyclic voltammogram of 5 exhibits six well-separated reversible, one-electron redox waves due to the strong electronic communication between two C(60) cages through a tetrairidium metal cluster spacer. The electrochemical properties of 3, 5, and 6 have been rationalized by molecular orbital calculations using density functional theory and by charge distribution studies employing the Mulliken and Hirshfeld population analyses.  相似文献   

7.
C2-symmetric chiral bisformamides have been shown to catalyze the asymmetric one-pot, three-component Strecker reaction, which produced the alpha-amino nitriles in excellent yields (up to 99%) with good enantioselectivities (up to 86% ee). Optically pure products could be obtained after a single recrystallization. A possible transition state (TS 1) has been proposed to explain the origin of asymmetric inductivity and reactivity according to the geometry of catalyst 2a optimized at the B3LYP/6-31G(d) level and the absolute configuration of product 4a.  相似文献   

8.
A series of novel supramolecular complexes composed of a three-point binding C(60)-trispyridylporphyrin dyad (1) or C(70)-trispyridylporphyrin dyad (2) and zinc tetraphenylporphyrin (ZnP) were constructed by adopting a "covalent-coordinate" bonding approach, composed of three-point binding. The dyads and self-assembled supramolecular triads or pentads formed by coordinating the pyridine groups located on the dyads to ZnP, have been characterized by means of spectral and electrochemical techniques. The formation constants of ZnP-1 and ZnP-2 complexes were calculated as 1.4 × 10(4) M(-1) and 2.0 × 10(4) M(-1), respectively, and the Stern-Volmer quenching constants K(SV) were founded to be 2.9 × 10(4) M(-1) and 5.5 × 10(4) M(-1), respectively, which are much higher than those of other supramolecular complexes such as previously reported ZnP-3 (N-ethyl-2-(4-pyridyl)-3,4-fulleropyrrolidine). The electrochemical investigations of these complexes suggest weak interactions between the constituents in the ground state. The excited states of the complexes were further monitored by time-resolved fluorescence measurements. The results revealed that the presence of the multiple binding point dyads (1 or 2) slightly accelerated the fluorescence decay of ZnP in o-DCB relative to that of the "single-point" bound supramolecular complex ZnP-3. In comparison with 1 and 2, C(70) is suggested as a better electron acceptor relative to C(60). DFT calculations on a model of supramolecular complex ZnP-1 (with one ZnP entity) were performed. The results revealed that the lowest unoccupied molecular orbital (LUMO) is mainly located on the fullerene cage, while the highest occupied molecular orbital (HOMO) is mainly located on the ZnP macrocycle ring, predicting the formation of radical ion pair ZnP(+)˙-H(2)P-C(60)(-)˙ during photo-induced reaction.  相似文献   

9.
This study describes the first Diels-Alder (DA) reaction performed in aqueous medium with highly hydrophobic compounds-fullerene (C 60) as the dienophile and anthracene (An) or tetracene (Tet) as the dienes, respectively. The reactions are performed in nanocontainers, constructed by self-assembly of linear-dendritic amphiphilic copolymers with poly(ethylene glycol), PEG or poly(ethylene oxide), PEO as the hydrophilic blocks and poly(benzyl ether) monodendrons as the hydrophobic fragments: G3PEO13k, dG3 and dG2. Comparative studies under identical conditions are carried out with an amphiphilic linear-linear copolymer, poly(styrene)1800- block-PEO2100, PSt-PEO, and the nonionic surfactant Igepal CO-720, IP720. The binding affinity of supermolecules built of these amphiphiles toward the DA reagents decreases in the following order: G3PEO13k > dG3 > PSt-PEO > dG2 > IP720. The kinetic constant of binding is evaluated for tetracene and decreases in a similar fashion: 5 x 10 (-7) M/min (G3PEO13k), through 4 x 10 (-7) M/min (PSt-PEO) down to 1.5 x 10 (-7) M/min for IP720. The mobility of substrates encapsulated in the micellar core, estimated by pyrene fluorescence decay, is 95-121 ns for the micelles of the linear-dendritic copolymers and notably higher for PSt-PEO (152 ns), revealing the much denser interior of the linear analogue. The apparent kinetic constant for the DA reaction of C 60 and Tet within the G3PEO13k supermolecule in aqueous medium is markedly higher than in organic solvent (toluene), 208 vs 1.82 M /min. With G3PEO13k the conversions reach 49% for the DA reaction between C 60 and An, and 55% for C 60 and Tet. Besides the monoadduct (26.5% yield) the reaction with An produces exclusively increasing amounts of D 2 h -symmetric antipodal bis-adduct, whose yield reaches up to 22.5% after 48 h. In addition to the environmentally friendly conditions notable advantages of the synthetic strategy described are the extended stability of the linear-dendritic nanovessels, the easy collection of the products formed, and the recovery and reuse of unreacted reagents and linear-dendritic copolymers.  相似文献   

10.
Inspired by trinuclear Zn(ii) sites in enzymatic systems, a ligand system containing three preorganized (2-pyridyl)methyl piperazine moieties anchored onto a rigid C(3)-symmetric triphenoxymethane platform has been developed for preorganizing three zinc ions into an environment conducive to intramolecular interaction. Zinc(ii) binding by this ligand has been analyzed by means of potentiometric measurements in 50% (v/v) CH(3)CN-H(2)O solutions. Subsequently a C(3)-symmetric trinuclear Zn(ii) hydroxide complex of the C(3)-symmetric ligand was synthesized and fully characterized using NMR spectroscopy and X-ray crystallography. This complex induces a 16 900-fold rate enhancement in the catalytic cyclization of the RNA model substrate, 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP, pH 6.7, 25 degrees C) over the uncatalyzed reaction with multiple catalyst turnovers. The observed differences in the pH-rate profile can be attributed to the varying concentration of various trinuclear zinc species. The trinuclear Zn(ii) catalyst exhibits a higher hydrolytic activity compared to its mononuclear analogue. The reactivity and structural features of this trinuclear Zn(ii) complex will be discussed.  相似文献   

11.
Eleven resorcinarene cavitands bearing either one, two or four (3-R-1-imidazolylium)-methyl substituents (R = (n)Bu, Ph, Mes, (i)Pr(2)C(6)H(3)) anchored at resorcinolic "ortho" positions have been synthesised from the appropriate bromomethylated precursor. Combining the imidazolium salts with palladium acetate and Cs(2)CO(3) gave active Suzuki-Miyaura cross coupling catalysts. The highest activities were observed with the doubly functionalised cavitands, which all have the imidazolylium groups attached to proximal resorcinol units.  相似文献   

12.
A new C3-symmetric drum-shaped homoditopic haxaamino bicyclic cyclophane and its hexachloride and hexaiodide complexes have been synthesized and characterized and dual recognition of guests has been demonstrated. Single-crystal X-ray analysis illustrates that bicyclic cyclophane has a cavity and side pockets for acetone molecules. The hexaprotonated state of this bicycle shows encapsulation of an iodide inside its cavity, and in hexachloride complex, chloride is recognized as Cl(-)...H2O in each of the three side pockets which are in extensive hydrogen bonding interactions with the water and chlorides. (1)H NMR experiments have also been carried out on hexatosylated cyclophane with the halides to study solution state binding.  相似文献   

13.
A significant improvement in the selectivity of fullerene trifluoromethylation reactions was achieved. Reaction of trifluoroiodomethane with [60]fullerene at 460 degrees C and [70]fullerene at 470 degrees C in a flow reactor led to isolation of cold-zone-condensed mixtures of C60(CF3)n and C70(CF3)n compounds with narrow composition ranges: 6 < or = n < or = 12 for C(60)(CF3)n and 8 < or = n < or = 14 for C70(CF3)n. The predominant products in the C(60) reaction, an estimated 40+ mol % of the cold-zone condensate, were three isomers of C60(CF3)10. Two of these were purified by two-stage HPLC to 80+% isomeric purity. The third isomer was purified by three-stage HPLC to 95% isomeric purity. Thirteen milligrams of this orange-brown compound was isolated (5% overall yield based on C60, and its C1-symmetric structure was determined to be 1,3,7,10,14,17,23,28,31,40-C60(CF3)10 by X-ray crystallography. The CF3 groups are either meta or para to one another on a p-m-p-p-p-m-p-m-p ribbon of edge-sharing C6(CF3)2 hexagons (each pair of adjacent hexagons shares a common CF3 group). The selectivity of the C70 reaction was even higher. The predominant product was a single C70(CF3)10 isomer representing >40 mol % of the cold-zone condensate. Single-stage HPLC led to the isolation of 12 mg of this brown compound in 95% isomeric purity (27% overall yield based on converted C70. The new compounds were characterized by EI or S(8)-MALDI mass spectrometry and 2D-COSY 19F NMR spectroscopy. The NMR data demonstrate that through-space coupling via direct overlap of fluorine orbitals is the predominant contribution to J(FF) values in these and most other fullerene(CF3)n compounds.  相似文献   

14.
Synthesis of novel C2-symmetric chiral crown ethers and their application to enantioselective trifluoromethylation of aldehydes and ketones are discussed. The use of a series of C2-symmetric chiral crown ethers 2 or 3 derived from commercially available (R)-1,1′-bi-2-naphthol for the enantioselective trifluoromethylation of 2-naphthyl aldehyde 1a with (trifluoromethyl)trimethylsilane in the presence of a base was attempted. Iodo-substituted crown ether 2b was found to be the most effective in the model reaction. Moderate enantioselectivities were observed for the trifluoromethylation of both aryl or alkyl aldehydes and alkyl aryl ketones in 21-44% ees. Although the ees are still improvable, this is the first example of a chiral crown ether-catalyzed enantioselective trifluoromethylation reaction.  相似文献   

15.
Dynamic covalent chemistry (DCC) provides an intriguing and highly efficient approach for building molecules that are usually thermodynamically favored. However, the DCC methods that are efficient enough to construct large, complex molecules, particularly those with three-dimensional (3-D) architectures, are still very limited. Here, for the first time, we have successfully utilized alkyne metathesis, a highly efficient DCC approach, to construct the novel 3-D rectangular prismatic molecular cage COP-5 in one step from a readily accessible porphyrin-based precursor. COP-5 consists of rigid, aromatic porphyrin and carbazole moieties as well as linear ethynylene linkers, rendering its shape-persistent nature. Interestingly, COP-5 serves as an excellent receptor for fullerenes. It forms 1:1 complexes with C(60) and C(70) with association constants of 1.4 × 10(5) M(-1) (C(60)) and 1.5 × 10(8) M(-1) (C(70)) in toluene. This represents one of the highest binding affinities reported so far for purely organic fullerene receptors. COP-5 shows an unprecedented high selectivity in binding C(70) over C(60) (K(C70)/K(C60) > 1000). Moreover, the binding between the cage and fullerene is fully reversible under the acid-base stimuli, thus allowing successful separation of C(70) from a C(60)-enriched fullerene mixture (C(60)/C(70), 10/1 mol/mol) through the "selective complexation-decomplexation" strategy.  相似文献   

16.
The synthesis and photophysical properties of several fullerene-phthalocyanine-porphyrin triads (1-3) and pentads (4-6) are described. The three photoactive moieties were covalently connected in an one-step synthesis through 1,3-dipolar cycloaddition to C(60) of the corresponding azomethine ylides generated in situ by condensation reaction of a substituted N-porphyrinylmethylglycine derivative and an appropriated formyl phthalocyanine or a diformyl phthalocyanine derivative, respectively. ZnP-C(60)-ZnPc (3), (ZnP)(2)-ZnPc-(C(60))(2) (6), and (H(2)P)(2)-ZnPc-(C(60))(2) (5) give rise upon excitation of their ZnP or H(2)P components to a sequence of energy and charge-transfer reactions with, however, fundamentally different outcomes. With (ZnP)(2)-ZnPc-(C(60))(2) (6) the major pathway is an highly exothermic charge transfer to afford (ZnP)(ZnP(.+))-ZnPc-(C(60)(.-))(C(60)). The lower singlet excited state energy of H(2)P (i.e., ca. 0.2 eV) and likewise its more anodic oxidation (i.e., ca. 0.2 V) renders the direct charge transfer in (H(2)P)(2)-ZnPc-(C(60))(2) (5) not competitive. Instead, a transduction of singlet excited state energy prevails to form the ZnPc singlet excited state. This triggers then an intramolecular charge transfer reaction to form exclusively (H(2)P)(2)-ZnPc(.+)-(C(60)(.-))(C(60)). A similar sequence is found for ZnP-C(60)-ZnPc (3).  相似文献   

17.
[reaction: see text] (3R,5R)-1 R1 & R2 = TBDPS, (3S,5R)-2 R1 = Bn,R2 = TBDPS, (3S,5S)-3 R2 & R2 = Bn. trans-3,5-Bis(benzyl/tert-butyldiphenylsilyloxymethyl)morpholines, promising candidates for the C(2)-symmetric class of chiral reagents, were prepared with excellent optical purity. A key step in the synthesis is the coupling of a serinol derivative with 2,3-O-isopropylideneglycerol triflate or its equivalent. This methodology was extended to the synthesis of chiral trans-3-(benzyloxymethyl)-5-(tert-butyldiphenylsilyloxymethyl)morpholine, a potentially useful chiral building block.  相似文献   

18.
A family of new Fischer-type rhenium(III) benzoyldiazenido-2-oxacyclocarbenes of formula [(ReCl2[eta1-N2C(O)Ph][=C(CH2)nCH(R)O](PPh3)2][n = 2, R = H (2), R = Me (3); n = 3, R = H (4), R = Me (5)] have been prepared by reaction of [ReCl2[eta2-N2C(Ph)O](PPh3)2] (1) with omega-alkynols, such as 3-butyn-1-ol, 4-pentyn-1-ol, 4-pentyn-2-ol, 5-hexyn-2-ol in refluxing THF. The correct formulation of the carbene derivatives 2-5 has been unambiguously determined in solution by NMR analysis and confirmed for compounds 2-4 by X-ray diffraction methods in the solid state. All complexes are octahedral with the benzoyldiazenido ligand, Re[N2C(O)Ph], adopting a "single bent" conformation. The coordination basal plane is completed by an oxacyclocarbene ligand and two chlorine atoms. Two triphenylphosphines in trans positions with respect to each other complete the octahedral geometry around rhenium. The reactivity of 1 towards different alkynes and alkenes including propargyl- and allylamine has been also studied. With propargyl amine, monosubstituted or bisubstituted complexes, [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2C triple bond CH]n(PPh3)(3-n)][n= 1 (6); n = 2 (7)], have been isolated depending on the reaction conditions. In contrast, the reaction with allylamine gave only the disubstituted complex [(ReCl2[eta1-N2C(O)Ph][eta1-NH2CH2CH=CH2]2(PPh3)] (8). The molecular structure of the monosubstituted adduct has been confirmed by X-ray analysis in the solid state.  相似文献   

19.
Counteranion effects on the rate and stereochemistry of syndiotactic propylene enchainment by the archetypal C(s)-symmetric precatalyst [Me(2)C(Cp)(Flu)]ZrMe(2) (1; Cp = C(5)H(4); Flu = C(13)H(8), fluorenyl) are probed using the cocatalysts MAO (2), B(C(6)F(5))(3) (3)(,) B(2-C(6)F(5)C(6)F(4))(3) (4)(,) Ph(3)C(+)B(C(6)F(5))(4)(-) (5), and Ph(3)C(+)FAl(2-C(6)F(5)C(6)F(4))(3)(-) (6), offering greatly different structural and ion pairing characteristics. Reaction of 1 with 3 affords [Me(2)C(Cp)(Flu)]ZrMe(+) MeB(C(6)F(5))(3)(-) (7). In the case of 4, this reaction leads to formation the micro-methyl dinuclear diastereomers [([Me(2)C(Cp)(Flu)]ZrMe)(2)(micro-Me)](+) MeB(2-C(6)F(5)C(6)F(4))(3)(-) (8). A similar reaction with 6 results in diastereomeric [Me(2)C(Cp)(Flu)]ZrMe(+) FAl(2-C(6)F(5)C(6)F(4))(3)(-) (10) ion pairs. The molecular structures of 7 and 10 have been determined by single-crystal X-ray diffraction. Reorganization pathways available to these species have been examined using EXSY and dynamic NMR, revealing that the cation-MeB(C(6)F(5))(3)(-) interaction is considerably weaker/more mobile than in the FAl(2-C(6)F(5)C(6)F(4))(3)(-)-derived analogue. Polymerizations mediated by 1 in toluene over the temperature range of -10 degrees to +60 degrees C and at 1.0-5.0 atm propylene pressure (at 60 degrees C) reveal that activity, product syndiotacticity, m and mm stereodefect generation, and chain transfer processes are highly sensitive to the nature of the ion pairing. Thus, the complexes activated with 4 and 5, having the weakest ion pairing, yield the highest estimated propagation rates, while with 6, having the strongest pairing, yields the lowest. The strongly coordinating, immobile FAl(2-C(6)F(5)C(6)F(4))(3)(-) anion produces the highest/least temperature-dependent product syndiotacticity, lowest/least temperature-dependent m stereodefect abundance, and highest product molecular weight. These polypropylene microstructural parameters, and also M(w), are least sensitive to increased propylene pressure for FAl(2-C(6)F(5)C(6)F(4))(3)(-), but highest with MeB(C(6)F(5))(3)(-). In general, mm stereodefect production is only modestly anion-sensitive; [propylene] dependence studies reveal enantiofacial propylene misinsertion to be the prevailing mm-generating process in all systems at 60 degrees C, being most dominant with 6, where mm stereodefect abundance is lowest. For 1,3-dichlorobenzene as the polymerization solvent, product syndiotacticity, as well as m and mm stereodefects, become indistinguishable for all cocatalysts. These observations are consistent with a scenario in which ion pairing modulates the rates of stereodefect generating processes relative to monomer enchainment, hence net enchainment syndioselectivity, and also dictates the rate of termination relative to propagation and the preferred termination pathway. In comparison to 3-6, propylene polymerization mediated by MAO (2) + 1 in toluene reveals an estimated ordering in site epimerization rates as 5 > 4 > 2 > 3 > 6, while product syndiotacticities rank as 6 > 2 > 5 approximately 4 > 3.  相似文献   

20.
Fang T  Du DM  Lu SF  Xu J 《Organic letters》2005,7(11):2081-2084
[reaction: see text]. A series of new chiral C3-symmetric tris(beta-hydroxy amide) ligands have been synthesized via the reaction of 1,3,5-benzenetricarboxylic chloride and optically pure amino alcohols (up to 96% yield). The asymmetric catalytic alkynylation of aldehydes with these new C3-symmetric chiral tris(beta-hydroxy amide) ligands and Ti (O(i)'Pr)4 was investigated. Ligand 4c synthesized from (1R,2S)-(-)-2-amino-1,2-diphenylethanol is effective for the enantioselective alkynylation of various aldehydes, and high enantioselectivity was obtained with aromatic aldehydes and alpha,beta-unsaturated aldehyde (up to 92% ee).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号