首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dinuclear copper complex that binds tightly and selectively to oxalate over other dicarboxylates like malonate, succinate, and glutarate has been developed. This receptor can be used for fluorescent detection of oxalate in water at physicological pH by chemosensing ensemble approach. Crystal structure of oxalate bound to the receptor together with molecular mechanics and DFT computations provide insights into the tight and selective binding of the anion by the receptor.  相似文献   

2.
A new polyamine macrobicyclic compound was synthesised through a [1+1] "tripod-tripod coupling" strategy and using a Schiff base condensation reaction, followed by sodium borohydride reduction. The resulting compound is a heteroditopic cage (btpN(7)) in which one of the head units is appropriate for the coordination of copper(II), whereas the other head is available for additional hydrogen-bonding and electrostatic interactions with substrates. The acid-base behaviour of the new compound, the stability constants of its complex with the Cu(2+) ion and the association constants of the copper(II) cryptate with oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), maleate (male(2-)) and fumarate (fum(2-)) were determined by potentiometry at 298.2 K in aqueous solution and at an ionic strength of 0.10 mol dm(-3) in KNO(3). These studies revealed a clear preference of the receptor [CuH(h)btpN(7)H(2)O]((2+h)+) for oxa(2-) over the other dicarboxylate substrates. This arises from co-operativity between metal-anion coordination and electrostatic and hydrogen-bonding interactions, in accordance with the ideal size of this dicarboxylate, which allow it to take full advantage of the potential binding sites of the receptor. A qualitative indicator-displacement study, in agreement with the potentiometric studies, demonstrated that the copper cryptate receptor can be used as a selective visual sensor for oxalate.  相似文献   

3.
The silver—silver oxalate electrode has been employed by many workers1–3 in aqueous media as the second order reference electrode, but no work seems to have been done so far on the study of the behaviour of silver—silver malonate and silver—silver succinate electrodes. The present work deals with the study of these electrodes in ionic equilibria of malonate and succinate ions in aqueous media. These electrodes, in conjunction with a saturated calomel electrode, have been employed in the poten- tiometric determination of malonate and succinate ions in aqueous media. In additon, the effect of the added salts, such as, potassium nitrate and sucrose on the behaviour of these electrodes has also been examined in this media.  相似文献   

4.
Copper-catalyzed 1,3-dipolar cycloaddition of azides to acetylenes successfully afforded pincer bistriazolium receptor containing two lithocholic acid fragments and phenylphosphonic diamide bridge. The obtained receptor showed high complexing power toward fluoride ions and organic acid anions, which decreased in the series fluoride > succinate ≥ malonate > oxalate ≥ lithocholate > benzoate > acetate > hydrogen sulfate > bromide.  相似文献   

5.
Geometries of azophenol–thiourea derivative complexes with acetate, oxalate, malonate, succinate, glutarate, adipate, pimelate, suberate and azelate were carried out using the integrated MO:MO method. The binding and complexation energies of these complexes were derived from the ONIOM(B3LYP/6-31G(d):AM1) calculations. The relative stabilities of the complexes of azophenol–thiourea derivatives with carboxylate guests are reported. The binding interactions of the azophenol–thiourea receptor 1, 2 and carboxylate guests are described as multipoints hydrogen bonding, where the amine and phenolic hydrogen atoms of receptors act as hydrogen bond donors in complex with acetate and all amine-hydrogen and phenolic hydrogen atoms act as hydrogen bond donors in complex with dicarboxylate guests. Thermodynamic properties of binding interactions between receptors 1, 2 and their preorganizations and complexations are also reported.  相似文献   

6.
A homologous series of anionic gas-phase clusters of dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid) generated via electrospray ionization (ESI) are investigated using collision-induced dissociation (CID). Sodiated clusters with the composition (Na(+))(2)(n+1)(dicarboxylate(2-)(n+1) for singly charged anionic clusters, where n = 1-4, are observed as major gas-phase species. Isolation of the clusters followed by CID results mainly in sequential loss of disodium dicarboxylate moieties for the clusters of succinic acid, glutaric acid, and adipic acid (C4-C6). However, all oxalate (C2) and malonate (C3) clusters and dimers (n = 1) of succinate (C4) and glutarate (C5) exhibit more complex chemistry initiated by collision of the activated cluster with water molecules. For example, with water addition, malonate clusters dissociate to yield sodium acetate, carbon dioxide, and sodium hydroxide. More generally, water molecules serve as proton donors for reacting dicarboxylate anions in the cluster and introduce energetically favorable dissociation pathways not otherwise available. Density functional theory (DFT) calculations of the binding energy of the cluster correlate well with the cluster phase reactions of oxalate and malonate clusters. Clusters of larger dicarboxylate ions (C4-C6) are more weakly bound, facilitating the sequential loss of disodium dicarboxylate moieties. The more strongly bound small dicarboxylate anions (oxalate and malonate) preferentially react with water molecules rather than dissociate to lose disodium dicarboxylate monomers when collisionally activated. Implications of these results for the atmospheric aerosol chemistry of dicarboxylic acids are discussed.  相似文献   

7.
有机酸与无机阴离子的梯度离子色谱法分析研究   总被引:17,自引:0,他引:17  
刘  刘克纳  沈冬青  宋强  牟世芬  冯应升 《色谱》1997,15(4):334-337
研究了用离子色谱法梯度洗脱抑制电导检测器分析有机酸与无机阴离子的色谱条件,建立了最佳梯度程序。用阴离子交换分离,选用去离子水、氢氧化钠和甲醇作淋洗液,分别对5种二元有机酸和3种无机阴离子做二元梯度淋洗,对10种多元有机酸和3种无机阴离子做三元梯度淋洗。方法用于果汁饮料与柠檬酸发酵液的测定,结果令人满意。  相似文献   

8.
A homologous series of cationic gas-phase clusters of dicarboxylic acids (oxalic acid, malonic acid, succinic acid, glutaric acid, and adipic acid) generated via electrospray ionization (ESI) are investigated using collision-induced dissociation (CID). Singly charged cationic clusters with the composition (Na(+))(2n+1)(dicarboxylate(2-))(n), where n = 1-5, are observed as major gas-phase species. Significant abundances of singly charged sodiated hydrogen dicarboxylate clusters with the composition (Na(+))(2n)(dicarboxylate(2-))(n)(H+), where n = 1-6, are observed with oxalic acid, malonic acid, and succinic acid. Isolation of the clusters followed by CID results mainly in sequential loss of disodium dicarboxylate moieties for the clusters of succinic acid, glutaric acid, and adipic acid. However, the dimer of sodiated hydrogen succinate, all malonate clusters, and all oxalate clusters, with the exception of the dimer, exhibit complex chemical reactions initiated by the collision of vibrationally excited clusters with water molecules. Generally, water molecules serve as proton donors for reacting dicarboxylate anions in the cluster, initiating dissociation pathways such as the decomposition of the malonate ion to yield an acetate ion and CO(2). The reactivity of several mixed dicarboxylate clusters is also reported. For example, malonate anion is shown to be more reactive than oxalate anion for decarboxylation when both are present in a cluster. The energetics of several representative cluster phase reactions are evaluated using computational modeling. The present results for cationic clusters are compared and contrasted to earlier studies of anionic sodiated dicarboxylic acid clusters.  相似文献   

9.
Two ditopic polyamine macrobicyclic compounds have been studied as receptors for the recognition of dicarboxylate anions of varying chain length in aqueous solution. One of the receptors consists of two tris(2-aminoethyl)amine-derived binding subunits separated by p-xylyl spacers, while the other is a heteroditopic compound, combining two different head units, a tren-derived and a 2,4,6-triethylbenzene-derived one, also separated by p-xylyl spacers. The acid-base behavior of the compounds as well as their binding ability with oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), glutarate (glu(2-)), maleate (male(2-)) and fumarate (fum(2-)) anions were studied by potentiometry at 298.2 K in aqueous solution and at ionic strength 0.10 M in KTsO. NMR studies were also performed to obtain structural information in solution on the supermolecules formed by association of the protonated macrobicycles with the dicarboxylate substrates. The results revealed that both compounds are able to form stable associations with the dianionic substrates in competitive aqueous solution, with unprecedented selectivity for fum(2-) over other dicarboxylate competitors, including its cis isomer male(2-). In addition it was found that although the selectivity pattern is unaffected by the introduction of the 2,4,6-triethylbenzene head unit, the affinity toward dicarboxylates is significantly reduced. Therefore, the comparison between the binding behavior of these two receptors showed the effect of the increased rigidity and lipophilicity of the receptor with the 2,4,6-triethylbenzene head unit in the binding properties and the selectivity pattern.  相似文献   

10.
The competitive adsorption between oxalate and malonate at the water-goethite interface was studied as a function of pH and total ligand concentrations by means of quantitative adsorption measurements and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The results obtained show that ATR-FTIR spectroscopy resolves the individual spectroscopic features of oxalate and malonate when adsorbed simultaneously at the water-goethite interface. The characteristic peaks of all four types of predominating surface complexes existing in the single ligand systems were identified, namely one inner sphere and one outer sphere surface complex for each ligand. The quantitative adsorption data showed that oxalate partially out-competes malonate at the water-goethite interface. Evaluation of the peak area variations as a function of pH indicated that the stronger oxalate adsorption can be ascribed to the more stable inner sphere surface complex of oxalate, which in turn is related to the oxalate five-member chelate ring structure yielding a more stable complex compared to the six-member ring of malonate.  相似文献   

11.
p-tert-Butylcalix[4]arene-based dipodal receptor has been synthesized in cone conformation. The binding affinity of this receptor was evaluated with some aliphatic diacetates such as malonate, succinate, glutarate, adipate, pimelate, and suberate in CH3CN. The receptor has the highest binding affinity for pimelate by making a 1:1 complex. This receptor was used to estimate pimelate in the presence of other dicarboxylates.  相似文献   

12.
Complexation of U(VI) by succinate has been studied at various temperatures in the range of (298 to 338) K by potentiometry and isothermal titration calorimetry at constant ionic strength (1.0 M). The potentiometric titrations revealed the formation of 1:1 uranyl succinate complex in the pH range of 1.5 to 4.5. The stability constant of uranyl succinate complex was found to increase with temperature. Similar trend was observed in the case of enthalpy of complex formation. However, the increase in entropy with temperature over-compensated the increase in enthalpy, thereby favouring the complexation reaction at higher temperatures. The linear increase of enthalpy of complexation with temperature indicates constancy of the change in heat capacity during complexation. The temperature dependence of stability constant data was well explained with the help of Born equation for electrostatic interaction between the metal ion and the ligand. The data have been compared with those for uranyl complexes with malonate and oxalate to study the effect of ligand size and hydrophobicity on the temperature dependence of thermodynamic quantities.  相似文献   

13.
Ismail MI 《Talanta》1992,39(9):1107-1111
Differential pulse polarography was used to study the mixed ligand complexes of imidazole and some dicarboxylate anions namely, oxalate, tartrate and malonate with Cd(II) at constant ionic strength (mu = 1, NaNO(3)) at 25 +/- 0.1 degrees . It has been found that the reduction of complexes is reversible and diffusion-controlled. Three mixed complexes are formed with malonate (or oxalate) whereas four mixed complexes are formed with tartrate. The overall stability constants for each system were calculated and discussed.  相似文献   

14.
The structures of 8,8′-bis(3-phenylthioureidomethyl)-2,2′-binaphthalene (1), 8,8′-bis(3-butylthioureidomethyl)-2,2′-binaphthalene (2) and their complexes with anionic guests such as carboxylate ions (acetate, oxalate, malonate, succinate, glutarate, adipate, pimelate, suberate, and azelate), inorganic oxygen-containing anions (nitrate, sulfate, bicarbonate, hydrogen phosphate, and dihydrogen phosphate), and halide ions (fluoride, chloride, and bromide) were obtained using the ONIOM approach. The binding abilities of receptors 1 and 2 to anionic species in terms of binding energy, thermodynamic properties, and selectivity coefficient were obtained at the ONIOM(B3LYP/6-31G(d):AM1) and BSSE-corrected B3LYP/6-31G(d)//ONIOM(B3LYP/6-31G(d):AM1) levels of theory. The multipoint hydrogen bonding between receptors (either the receptor 1 or 2) and anionic guests were found. The hydrogen phosphate is the most preferable ion to bind with either the receptor 1 or 2.  相似文献   

15.
Gaur JN  Palrecha MM 《Talanta》1968,15(7):583-588
The malonate, succinate, glutarate and adipate complexes of lead have been examined polarographically and the overall stability constants evaluated. The values found are log beta(1) = 2.60, 2.40, 2.48, 2.38; log beta(2) = 3.62, 3.73, 3.45, 3.20; log beta(3) = 4.32, 4.11, 3.90, 3.69, for the malonate, succinate, glutarate and adipate complexes respectively.  相似文献   

16.
Values for the solubilities of salts Ag2X (where X is sulphate, chromate, tungstate, dichromate, oxalate, malonate, succinate, glutarate, or adipate) and Ag3Y (where Y is phosphate, arsenate or ferrioxalate) in four different compositions of water + acetic acid (10, 20, 40 and 60 wt.% acid) have been determined at 25°C. Solubility data are discussed in the light of electrostatic and solute—solvent interaction effects on the dissolution processes of the silver salts.  相似文献   

17.
A new neutral receptor containing 2-aminobenzimidazole moieties was synthesized. The binding properties of the host 1 toward dicarboxylates and mono anions have been examined by using fluorescence spectrometry. The host 1 effectively recognized malonate, succinate, glutarate, adipate, and pimelate with 1:1 binding through hydrogen bonding interactions, and it also recognized acetate with 1:1 binding.  相似文献   

18.
Four gadolinium(III) complexes with dicarboxylate ligands of formulas [Gd2(mal)3(H2O)5]n.2nH2O (1), [Gd2(mal)3(H2O)6]n (2), [NaGd(mal)(ox)(H2O)3]n (3), and [Gd2(ox)3(H2O)6]n.2.5nH2O (4) (mal = malonate; ox = oxalate) have been prepared, and their magnetic properties have been investigated as a function of the temperature. The structures of 1-3 have been determined by X-ray diffraction methods. The crystal structure of 4 was already known, and it is made of hexagonal layers of Gd atoms that are bridged by bis-bidentate oxalate. Compound 1 is isostructural with the europium(III) malonate complex [Eu2(mal)3(H2O)5]n.2nH2O,1 whose structure was reported elsewhere. The Gd atoms in 1 define a two-dimensional network where a terminal bidentate and bridging bidentate/bis-monodentate and tris-bidentate coordination modes of malonate occur. Compound 2 has a three-dimensional structure with a structural phase transition at 226 K, which involves a change of the space group from I2/a to Ia. Although its structure at room temperature was already known, that below 226 K was not. Pairs of Gd atoms with a double oxo-carboxylate bridge occur in both phases, and the main differences between both structures deal with the Gd environment and the H-bond pattern. 3 is also a three-dimensional compound, and it was obtained by reacting Gd(III) ions with malonic acid in a silica gel medium. Oxalic acid results as an oxidized product of the malonic acid, and single crystals of the heteroleptic complex were produced. The Gd atoms in 3 are connected through bis-bidentate oxalate and carboxylate-malonate bridges in the anti-anti and anti-syn coordination modes. Compounds 1 and 2 exhibit weak but significant ferromagnetic couplings between the Gd(III) ions through the single (1) and double (2) oxo-carboxylate bridges, whereas antiferromagnetic interactions across the bis-bidentate oxalate account for the overall antiferromagnetic behavior observed in 3 and 4.  相似文献   

19.
Twelve compounds containing two quadruply bonded Mo(2)(DAniF)(3) (DAniF = N,N'-di-p-anisylformamidinate) units linked by dicarboxylate anions have been prepared in high purity and good yields. All of these compounds have been characterized by crystallography and NMR. The dinuclear pairs display electrochemical behavior which is controlled by the nature of the bridging dicarboxylate group. As described by the linkers, the compounds are oxalate, 1; acetylene dicarboxylate, 2; fumarate, 3; tetrafluorophthalate, 4; carborane dicarboxylate, 5; ferrocene dicarboxylate, 6; malonate, 7; succinate, 8; propane-1,3-dicarboxylate, 9; tetrafluorosuccinate, 10; bicyclo[1.1.1]pentane-1,3-dicarboxylate, 11; and trans-1,4-cyclohexanedicarboxylate, 12.  相似文献   

20.
The formation and stability of Li+, Na+ and K+ complexes with oxalate, malonate, succinate, maleate, DL-malate and phthalate were studied potentiometrically at various ionic strengths. From the data thus obtained, as well as from several literature data on the protonation of the above-mentioned ligands in various ionic media and at various temperatures, the dependence of Na+ and K+ complex formation on temperature was determined. The dependence on ionic strength, both for the protonation and the complex formation, is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号