首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study addresses a number of topical issues around the use of protein-ligand docking in virtual screening. We show that, for the validation of such methods, it is key to use focused libraries (containing compounds with one-dimensional properties, similar to the actives), rather than "random" or "drug-like" libraries to test the actives against. We also show that, to obtain good enrichments, the docking program needs to produce reliable binding modes. We demonstrate how pharmacophores can be used to guide the dockings and improve enrichments, and we compare the performance of three consensus-ranking protocols against ranking based on individual scoring functions. Finally, we show that protein-ligand docking can be an effective aid in the screening for weak, fragment-like binders, which has rapidly become a popular strategy for hit identification. All results presented are based on carefully constructed virtual screening experiments against four targets, using the protein-ligand docking program GOLD.  相似文献   

2.
Docking and scoring are critical issues in virtual drug screening methods. Fast and reliable methods are required for the prediction of binding affinity especially when applied to a large library of compounds. The implementation of receptor flexibility and refinement of scoring functions for this purpose are extremely challenging in terms of computational speed. Here we propose a knowledge-based multiple-conformation docking method that efficiently accommodates receptor flexibility thus permitting reliable virtual screening of large compound libraries. Starting with a small number of active compounds, a preliminary docking operation is conducted on a large ensemble of receptor conformations to select the minimal subset of receptor conformations that provides a strong correlation between the experimental binding affinity (e.g., Ki, IC50) and the docking score. Only this subset is used for subsequent multiple-conformation docking of the entire data set of library (test) compounds. In conjunction with the multiple-conformation docking procedure, a two-step scoring scheme is employed by which the optimal scoring geometries obtained from the multiple-conformation docking are re-scored by a molecular mechanics energy function including desolvation terms. To demonstrate the feasibility of this approach, we applied this integrated approach to the estrogen receptor alpha (ERalpha) system for which published binding affinity data were available for a series of structurally diverse chemicals. The statistical correlation between docking scores and experimental values was significantly improved from those of single-conformation dockings. This approach led to substantial enrichment of the virtual screening conducted on mixtures of active and inactive ERalpha compounds.  相似文献   

3.
Structure-based virtual screening (SBVS) utilizing docking algorithms has become an essential tool in the drug discovery process, and significant progress has been made in successfully applying the technique to a wide range of receptor targets. In silico validation of virtual screening protocols before application to a receptor target using a corporate or commercially available compound collection is key to establishing a successful process. Ultimately, retrieval of a set of active compounds from a database of inactives is required, and the metric of enrichment (E) is habitually used to discern the quality of separation of the two. Numerous reports have addressed the performance of docking algorithms with regard to the quality of binding mode prediction and the issue of postprocessing "hit lists" of docked ligands. However, the impact of ligand database preprocessing has yet to be examined in the context of virtual screening and prioritization of compounds for biological evaluation. We provide an insight into the implications of cheminformatic preprocessing of a validation database of compounds where multiple protonated, tautomeric, stereochemical, and conformational states have been enumerated. Several commonly used methods for the generation of ligand conformations and conformational ensembles are examined, paired with an exhaustive rigid-body algorithm for the docking of different "multimeric" compound representations to the ligand binding site of the human estrogen receptor alpha. Chemgauss, a shapegaussian scoring function with intrinsic chemical knowledge, was combined with PLP as a consensus-scoring scheme to rank output from the docking protocol and enrichment rates calculated for each screen. The overheads of CPU consumption and the effect on relative database size (disk requirement) for each of the protocols employed are considered. Assessment of these parameters indicates that SBVS enrichments are highly dependent on the initial cheminformatic treatment(s) used in database construction. The interplay of SMILES representations, stereochemical information, protonation state enumeration, and ligand conformation ensembles are critical in achieving optimum enrichment rates in such screening.  相似文献   

4.
The docking program LigandFit/Cerius(2) has been used to perform shape-based virtual screening of databases against the aspartic protease renin, a target of determined three-dimensional structure. The protein structure was used in the induced fit binding conformation that occurs when renin is bound to the highly active renin inhibitor 1 (IC(50) = 2 nM). The scoring was calculated using several different scoring functions in order to get insight into the predictability of the magnitude of binding interactions. A database of 1000 diverse and druglike compounds, comprised of 990 members of a virtual database generated by using the iLib diverse software and 10 known active renin inhibitors, was docked flexibly and scored to determine appropriate scoring functions. All seven scoring functions used (LigScore1, LigScore2, PLP1, PLP2, JAIN, PMF, LUDI) were able to retrieve at least 50% of the active compounds within the first 20% (200 molecules) of the entire test database. A hit rate of 90% in the top 1.4% resulted using the quadruple consensus scoring of LigScore2, PLP1, PLP2, and JAIN. Additionally, a focused database was created with the iLib diverse software and used for the same procedure as the test database. Docking and scoring of the 990 focused compounds and the 10 known actives were performed. A hit rate of 100% in the top 8.4% resulted with use of the triple consensus scoring of PLP1, PLP2, and PMF. As expected, a ranking of the known active compounds within the focused database compared to the test database was observed. Adequate virtual screening conditions were derived empirically. They can be used for proximate docking and scoring application of compounds with putative renin inhibiting potency.  相似文献   

5.
The performance of the site-features docking algorithm LibDock has been evaluated across eight GlaxoSmithKline targets as a follow-up to a broad validation study of docking and scoring software (Warren, G. L.; Andrews, W. C.; Capelli, A.; Clarke, B.; Lalonde, J.; Lambert, M. H.; Lindvall, M.; Nevins, N.; Semus, S. F.; Senger, S.; Tedesco, G.; Walls, I. D.; Woolven, J. M.; Peishoff, C. E.; Head, M. S. J. Med. Chem. 2006, 49, 5912-5931). Docking experiments were performed to assess both the accuracy in reproducing the binding mode of the ligand and the retrieval of active compounds in a virtual screening protocol using both the DJD (Diller, D. J.; Merz, K. M., Jr. Proteins 2001, 43, 113-124) and LigScore2 (Krammer, A. K.; Kirchoff, P. D.; Jiang, X.; Venkatachalam, C. M.; Waldman, M. J. Mol. Graphics Modell. 2005, 23, 395-407) scoring functions. This study was conducted using DJD scoring, and poses were rescored using all available scoring functions in the Accelrys LigandFit module, including LigScore2. For six out of eight targets at least 30% of the ligands were docked within a root-mean-square difference (RMSD) of 2.0 A for the crystallographic poses when the LigScore2 scoring function was used. LibDock retrieved at least 20% of active compounds in the top 10% of screened ligands for four of the eight targets in the virtual screening protocol. In both studies the LigScore2 scoring function enhanced the retrieval of crystallographic poses or active compounds in comparison with the results obtained using the DJD scoring function. The results for LibDock accuracy and ligand retrieval in virtual screening are compared to 10 other docking and scoring programs. These studies demonstrate the utility of the LigScore2 scoring function and that LibDock as a feature directed docking method performs as well as docking programs that use genetic/growing and Monte Carlo driven algorithms.  相似文献   

6.
Ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches were used to identify new inhibitors for ATAD2 bromodomain. The LBVS approach was used to search 23,129,083 clean compounds to identify compounds similar to an active compound with reported pIC50 equal to 7.2. Based on LBVS results, 19 compounds were selected. To perform SBVS, by applying nine filters on 23,129,083 clean compounds, 1,057,060 compounds were selected. After performing SBVS on these selected compounds with idock software, 16 compounds with the lowest binding energies were selected. More accurate molecular docking analysis was performed on these 35 selected compounds by using iGEMDOCK software and six of them with the lowest binding energies were selected as hit compounds. These compounds were zinc36647229, zinc77969074, zinc13637358, zinc77971540, zinc12991296 and zinc19374204.  相似文献   

7.
Virtual screening by molecular docking has become a widely used approach to lead discovery in the pharmaceutical industry when a high-resolution structure of the biological target of interest is available. The performance of three widely used docking programs (Glide, GOLD, and DOCK) for virtual database screening is studied when they are applied to the same protein target and ligand set. Comparisons of the docking programs and scoring functions using a large and diverse data set of pharmaceutically interesting targets and active compounds are carried out. We focus on the problem of docking and scoring flexible compounds which are sterically capable of docking into a rigid conformation of the receptor. The Glide XP methodology is shown to consistently yield enrichments superior to the two alternative methods, while GOLD outperforms DOCK on average. The study also shows that docking into multiple receptor structures can decrease the docking error in screening a diverse set of active compounds.  相似文献   

8.
Target-based virtual screening is increasingly used to generate leads for targets for which high quality three-dimensional (3D) structures are available. To allow large molecular databases to be screened rapidly, a tiered scoring scheme is often employed whereby a simple scoring function is used as a fast filter of the entire database and a more rigorous and time-consuming scoring function is used to rescore the top hits to produce the final list of ranked compounds. Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approaches are currently thought to be quite effective at incorporating implicit solvation into the estimation of ligand binding free energies. In this paper, the ability of a high-throughput MM-PBSA rescoring function to discriminate between correct and incorrect docking poses is investigated in detail. Various initial scoring functions are used to generate docked poses for a subset of the CCDC/Astex test set and to dock one set of actives/inactives from the DUD data set. The effectiveness of each of these initial scoring functions is discussed. Overall, the ability of the MM-PBSA rescoring function to (i) regenerate the set of X-ray complexes when docking the bound conformation of the ligand, (ii) regenerate the X-ray complexes when docking conformationally expanded databases for each ligand which include "conformation decoys" of the ligand, and (iii) enrich known actives in a virtual screen for the mineralocorticoid receptor in the presence of "ligand decoys" is assessed. While a pharmacophore-based molecular docking approach, PhDock, is used to carry out the docking, the results are expected to be general to use with any docking method.  相似文献   

9.
Virtual screening—predicting which compounds within a specified compound library bind to a target molecule, typically a protein—is a fundamental task in the field of drug discovery. Doing virtual screening well provides tangible practical benefits, including reduced drug development costs, faster time to therapeutic viability, and fewer unforeseen side effects. As with most applied computational tasks, the algorithms currently used to perform virtual screening feature inherent tradeoffs between speed and accuracy. Furthermore, even theoretically rigorous, computationally intensive methods may fail to account for important effects relevant to whether a given compound will ultimately be usable as a drug. Here we investigate the virtual screening performance of the recently released Gnina molecular docking software, which uses deep convolutional networks to score protein-ligand structures. We find, on average, that Gnina outperforms conventional empirical scoring. The default scoring in Gnina outperforms the empirical AutoDock Vina scoring function on 89 of the 117 targets of the DUD-E and LIT-PCBA virtual screening benchmarks with a median 1% early enrichment factor that is more than twice that of Vina. However, we also find that issues of bias linger in these sets, even when not used directly to train models, and this bias obfuscates to what extent machine learning models are achieving their performance through a sophisticated interpretation of molecular interactions versus fitting to non-informative simplistic property distributions.  相似文献   

10.
11.
Receptor flexibility is a critical issue in structure-based virtual screening methods. Although a multiple-receptor conformation docking is an efficient way to account for receptor flexibility, it is still too slow for large molecular libraries. It was reported that a fast ligand-centric, shape-based virtual screening was more consistent for hit enrichment than a typical single-receptor conformation docking. Thus, we designed a "distributed docking" method that improves virtual high throughput screening by combining a shape-matching method with a multiple-receptor conformation docking. Database compounds are classified in advance based on shape similarities to one of the crystal ligands complexed with the target protein. This classification enables us to pick the appropriate receptor conformation for a single-receptor conformation docking of a given compound, thereby avoiding time-consuming multiple docking. In particular, this approach utilizes cross-docking scores of known ligands to all available receptor structures in order to optimize the algorithm. The present virtual screening method was tested for reidentification of known PPARgamma and p38 MAP kinase active compounds. We demonstrate that this method improves the enrichment while maintaining the computation speed of a typical single-receptor conformation docking.  相似文献   

12.
Several combinations of docking software and scoring functions were evaluated for their ability to predict the binding of a dataset of potential HIV integrase inhibitors. We found that different docking software were appropriate for each one of the three binding sites considered (LEDGF, Y3 and fragment sites), and the most suitable two docking protocols, involving Glide SP and Gold ChemScore, were selected using a training set of compounds identified from the structural data available. These protocols could successfully predict respectively 20.0 and 23.6 % of the HIV integrase binders, all of them being present in the LEDGF site. When a different analysis of the results was carried out by removing all alternate isomers of binders from the set, our predictions were dramatically improved, with an overall ROC AUC of 0.73 and enrichment factor at 10 % of 2.89 for the prediction obtained using Gold ChemScore. This study highlighted the ability of the selected docking protocols to correctly position in most cases the ortho-alkoxy-carboxylate core functional group of the ligands in the corresponding binding site, but also their difficulties to correctly rank the docking poses.  相似文献   

13.
We have developed a method that uses energetic analysis of structure-based fragment docking to elucidate key features for molecular recognition. This hybrid ligand- and structure-based methodology uses an atomic breakdown of the energy terms from the Glide XP scoring function to locate key pharmacophoric features from the docked fragments. First, we show that Glide accurately docks fragments, producing a root mean squared deviation (RMSD) of <1.0 Å for the top scoring pose to the native crystal structure. We then describe fragment-specific docking settings developed to generate poses that explore every pocket of a binding site while maintaining the docking accuracy of the top scoring pose. Next, we describe how the energy terms from the Glide XP scoring function are mapped onto pharmacophore sites from the docked fragments in order to rank their importance for binding. Using this energetic analysis we show that the most energetically favorable pharmacophore sites are consistent with features from known tight binding compounds. Finally, we describe a method to use the energetically selected sites from fragment docking to develop a pharmacophore hypothesis that can be used in virtual database screening to retrieve diverse compounds. We find that this method produces viable hypotheses that are consistent with known active compounds. In addition to retrieving diverse compounds that are not biased by the co-crystallized ligand, the method is able to recover known active compounds from a database screen, with an average enrichment of 8.1 in the top 1% of the database.  相似文献   

14.
15.
Structure-based virtual screening is a promising tool to identify putative targets for a specific ligand. Instead of docking multiple ligands into a single protein cavity, a single ligand is docked in a collection of binding sites. In inverse screening, hits are in fact targets which have been prioritized within the pool of best ranked proteins. The target rate depends on specificity and promiscuity in protein-ligand interactions and, to a considerable extent, on the effectiveness of the scoring function, which still is the Achilles' heel of molecular docking. In the present retrospective study, virtual screening of the sc-PDB target library by GOLD docking was carried out for four compounds (biotin, 4-hydroxy-tamoxifen, 6-hydroxy-1,6-dihydropurine ribonucleoside, and methotrexate) of known sc-PDB targets and, several ranking protocols based on GOLD fitness score and topological molecular interaction fingerprint (IFP) comparison were evaluated. For the four investigated ligands, the fusion of GOLD fitness and two IFP scores allowed the recovery of most targets, including the rare proteins which are not readily suitable for statistical analysis, while significantly filtering out most false positive entries. The current survey suggests that selecting a small number of targets (<20) for experimental evaluation is achievable with a pure structure-based approach.  相似文献   

16.
Virtual screening has become a popular tool to identify novel leads in the early phases of drug discovery. A variety of docking and scoring methods used in virtual screening have been the subject of active research in an effort to gauge limitations and articulate best practices. However, how to best utilize different scoring functions and various crystal structures, when available, is not yet well understood. In this work we use multiple crystal structures of PI3 K-γ in both prospective and retrospective virtual screening experiments. Both Glide SP scoring and Prime MM-GBSA rescoring are utilized in the prospective and retrospective virtual screens, and consensus scoring is investigated in the retrospective virtual screening experiments. The results show that each of the different crystal structures that was used, samples a different chemical space, i.e. different chemotypes are prioritized by each structure. In addition, the different (re)scoring functions prioritize different chemotypes as well. Somewhat surprisingly, the Prime MM-GBSA scoring function generally gives lower enrichments than Glide SP. Finally we investigate the impact of different ligand preparation protocols on virtual screening enrichment factors. In summary, different crystal structures and different scoring functions are complementary to each other and allow for a wider variety of chemotypes to be considered for experimental follow-up.  相似文献   

17.
Conventional docking-based virtual screening (VS) of chemical databases is based on the ranking of compounds according to the values retrieved by a scoring function (typically, the binding affinity estimation). However, using the most suitable scoring function for each kind of receptor pocket is not always an effective process to rank compounds, and sometimes neither to distinguish between correct binding modes from incorrect ones. To improve actives from decoys selection, here we propose a three-step VS protocol, which includes the conventional docking step, a pharmacophore postfilter step, and a similarity search postprocess. This VS protocol is retrospectively applied to VEGFR-2 (Kdr-kinase) inhibitors. The resulting docking poses calculated using the Alpha HB scoring function implemented in MOE are postfiltered according to defined pharmacophore interactions (structure based). The selected poses are again ranked according to their molecular similarity (MACCS fingerprint) to the cognate ligand. Results show that both the overall and early VS performance improve the application of this protocol.  相似文献   

18.
The performance of all four GOLD scoring functions has been evaluated for pose prediction and virtual screening under the standardized conditions of the comparative docking and scoring experiment reported in this Edition. Excellent pose prediction and good virtual screening performance was demonstrated using unmodified protein models and default parameter settings. The best performing scoring function for both pose prediction and virtual screening was demonstrated to be the recently introduced scoring function ChemPLP. We conclude that existing docking programs already perform close to optimally in the cognate pose prediction experiments currently carried out and that more stringent pose prediction tests should be used in the future. These should employ cross-docking sets. Evaluation of virtual screening performance remains problematic and much remains to be done to improve the usefulness of publically available active and decoy sets for virtual screening. Finally we suggest that, for certain target/scoring function combinations, good enrichment may sometimes be a consequence of 2D property recognition rather than a modelling of the correct 3D interactions.  相似文献   

19.
Lead Finder is a molecular docking software. Sampling uses an original implementation of the genetic algorithm that involves a number of additional optimization procedures. Lead Finder's scoring functions employ a set of semi-empiric molecular mechanics functionals that have been parameterized independently for docking, binding energy predictions and rank-ordering for virtual screening. Sampling and scoring both utilize a staged approach, moving from fast but less accurate algorithm versions to computationally more intensive but more accurate versions. Lead Finder includes tools for the preparation of full atom protein and ligand models. In this exercise, Lead Finder achieved 72.9% docking success rate on the Astex test set when the original author-prepared full atom models were used, and 74.1% success rate when the structures were prepared by Lead Finder. The major cause of docking failures were scoring errors resulting from the use of imperfect solvation models. In many cases, docking errors could be corrected by the proper protonation and the use of correct cyclic conformations of ligands. In virtual screening experiments on the DUD test set the early enrichment factor of several tens was achieved on average. However, the area under the ROC curve ("AUC ROC") ranged from 0.70 to 0.74 depending on the screening protocol used, and the separation from the null model was not perfect-0.12-0.15 units of AUC ROC. We assume that effective virtual screening in the whole range of enrichment curve and not just at the early enrichment stages requires more accurate solvation modeling and accounting for the protein backbone flexibility.  相似文献   

20.
Scoring forms a major obstacle to the success of any docking study. In general, fast scoring functions perform poorly when used to determine the relative affinity of ligands for their receptors. In this study, the objective was not to rank compounds with confidence but simply to identify a scoring method which could provide a 4-fold hit enrichment in a screening sample over random selection. To this end, LigandFit, a fast shape matching docking algorithm, was used to dock a variety of known inhibitors of type 4 phosphodiesterase (PDE4B) into its binding site determined crystallographically for a series of pyrazolopyridine inhibitors. The success of identifying good poses with this technique was explored through RMSD comparisons with 19 known inhibitors for which crystallographic structures were available. The effectiveness of five scoring functions (PMF, JAIN, PLP2, LigScore2, and DockScore) was then evaluated through consideration of the success in enriching the top ranked fractions of nine artificial databases, constructed by seeding 1980 inactive ligands (pIC50 < 5) with 20 randomly selected inhibitors (pIC50 > 6.5). PMF and JAIN showed high average enrichment factors (greater than 4 times) in the top 5-10% of the ranked databases. Rank-based consensus scoring was then investigated, and the rational combination of 3 scoring functions resulted in more robust scoring schemes with (cScore)-DPmJ (consensus score of DockScore, PMF, and JAIN) and (cScore)-PPmJ (PLP2, PMF, and JAIN) yielding particularly good results. These cScores are believed to be of greater general application. Finally, the analysis of the behavior of the scoring functions across different chemotypes uncovered the inherent bias of the docking and scoring toward compounds in the same structural family as that employed for the crystal structure, suggesting the need to use multiple versions of the binding site for more successful virtual screening strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号