首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The iminophosphine-phosphazene [P(III)-P(V)] heterocyclic adduct [IPr·PN(PCl(2)N)(2)] was prepared via reduction of the cyclic phosphazene [Cl(2)PN](3) in the presence of the carbene donor IPr {IPr = [(HCNDipp)(2)C:], where Dipp = 2,6-(i)Pr(2)C(6)H(3)}. By contrast, the treatment of [Cl(2)PN](3) with the N-heterocyclic olefin IPr═CH(2) yielded the olefin-grafted phosphazene ring [(IPr═CH)P(Cl)N(PCl(2)N)(2)].  相似文献   

2.
Formyl chloride (H(Cl)C=O) is unstable at room temperature and decomposes to HCl and CO. Silicon analogue of formyl chloride, silaformyl chloride IPr·SiH(Cl)=O·B(C(6)F(5))(3) (3) (IPr = 1,3-bis(2,6-diisopropyl-phenyl)imidazol-2-ylidene), was stabilized by Lewis donor-acceptor ligands. Compound 3 is not only the first stable acyclic silacarbonyl compound but also the first silacarbonyl halide reported so far.  相似文献   

3.
Reactions of N-heterocyclic carbene stabilized dichlorosilylene IPr·SiCl(2) (1) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) with (η(5)-C(5)H(5))V(CO)(4), (η(5)-C(5)H(5))Co(CO)(2), and Fe(2)(CO)(9) afford dichlorosilylene complexes IPr·SiCl(2)·V(CO)(3)(η(5)-C(5)H(5)) (2), IPr·SiCl(2)·Co(CO)(η(5)-C(5)H(5)) (3), and IPr·SiCl(2)·Fe(CO)(4) (4), respectively. Complexes 2-4 are stable under an inert atmosphere, are soluble in common organic solvents, and have been characterized by elemental analysis and multinuclear ((1)H, (13)C, and (29)Si) NMR spectroscopy. Molecular structures of 2-4 have been determined by single crystal X-ray crystallographic studies and refined with nonspherical scattering factors.  相似文献   

4.
The ruthenium(II) complexes [Ru(R)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh) are formed on reaction of IPr·CS(2) with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] (BTD = 2,1,3-benzothiadiazole) or [Ru(C(C≡CPh)=CHPh)Cl(CO)(PPh(3))(2)] in the presence of ammonium hexafluorophosphate. Similarly, the complexes [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)](+) are formed in the same manner when ICy·CS(2) is employed. The ligand IMes·CS(2) reacts with [Ru(R)Cl(CO)(BTD)(PPh(3))(2)] to form the compounds [Ru(R)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) (R = CH=CHBu(t), CH=CHC(6)H(4)Me-4, C(C≡CPh)=CHPh). Two osmium analogues, [Os(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) and [Os(C(C≡CPh)=CHPh)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+) were also prepared. When the more bulky diisopropylphenyl derivative IDip·CS(2) is used, an unusual product, [Ru(κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IDip)Cl(CO)(PPh(3))(2)](+), with a migrated vinyl group, is obtained. Over extended reaction times, [Ru(CH=CHC(6)H(4)Me-4)Cl(BTD)(CO)(PPh(3))(2)] also reacts with IMes·CS(2) and NH(4)PF(6) to yield the analogous product [Ru{κ(2)-SC(H)S(CH=CHC(6)H(4)Me-4)·IMes}Cl(CO)(PPh(3))(2)](+)via the intermediate [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IMes)(CO)(PPh(3))(2)](+). Structural studies are reported for [Ru(CH=CHC(6)H(4)Me-4)(κ(2)-S(2)C·IPr)(CO)(PPh(3))(2)]PF(6) and [Ru(C(C≡CPh)=CHPh)(κ(2)-S(2)C·ICy)(CO)(PPh(3))(2)]PF(6).  相似文献   

5.
The N-heterocyclic olefin, IPr=CH(2) (IPr = [(HCNDipp)(2)C], Dipp = 2,6-(i)Pr(2)C(6)H(3)) has been demonstrated to be of sufficient Lewis basicity to stabilize main group hydrides in unusually low oxidation states.  相似文献   

6.
The first divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 3 a , SIPr 3 b ; IPr=C{(NAr)CH}2; SIPr=C{(NAr)CH2}2; Ar=2,6-iPr2C6H3) are reported. Compounds 3 a and 3 b were prepared by the reduction of corresponding chlorides {(NHC)C(Ph)}AsCl2 (NHC=IPr 2 a , SIPr 2 b ) with Mg. Calculations revealed a small HOMO–LUMO energy gap of 3.86 ( 3 a ) and 4.24 eV ( 3 b ). Treatment of 3 a with (Me2S)AuCl led to the cleavage of the As=As bond to restore 2 a , which is expected to proceed via the diarsane [{(IPr)C(Ph)}AsCl]2 ( 4 ). Remarkably, 4 as well as 2 a can be selectively accessed on treatment of 3 a with an appropriate amount of C2Cl6. Moreover, 3 a readily reacts with PhEEPh (E=Se or Te) at room temperature to give {(IPr)C(Ph)}As(EPh)2 (E=Se 5 a ; Te 5 b ), revealing the cleavage of As=As and E−E bonds and the formation of As−E bonds. Such highly selective stepwise oxidation ( 3 a → 4 → 2 a ) and bond metathesis ( 3 a → 5 a , b ) reactions are unprecedented in main-group chemistry.  相似文献   

7.
Various low oxidation state (+2) group 14 element amidohydride adducts, IPr ? EH(BH3)NHDipp (E=Si or Ge; IPr=[(HCNDipp)2C:], Dipp=2,6‐iPr2C6H3), were synthesized. Thermolysis of the reported adducts was investigated as a potential route to Si‐ and Ge‐based clusters; however, unexpected transmetallation chemistry occurred to yield the carbene–borane adduct, IPr ? BH2NHDipp. When a solution of IPr ? BH2NHDipp in toluene was heated to 100 °C, a rare C? N bond‐activation/ring‐expansion reaction involving the bound N‐heterocyclic carbene donor (IPr) transpired.  相似文献   

8.
The mechanism of the intermolecular hydroamination of 3-methylbuta-1,2-diene ( 1 ) with N-methylaniline ( 2 ) catalyzed by (IPr)AuOTf has been studied by employing a combination of kinetic analysis, deuterium labelling studies, and in situ spectral analysis of catalytically active mixtures. The results of these and additional experiments are consistent with a mechanism for hydroamination involving reversible, endergonic displacement of N-methylaniline from [(IPr)Au(NHMePh)]+ ( 4 ) by allene to form the cationic gold π-C1,C2-allene complex [(IPr)Au(η2-H2C=C=CMe2)]+ ( I ), which is in rapid, endergonic equilibrium with the regioisomeric π-C2,C3-allene complex [(IPr)Au(η2-Me2C=C=CH2)]+ ( I′ ). Rapid and reversible outer-sphere addition of 2 to the terminal allene carbon atom of I′ to form gold vinyl complex (IPr)Au[C(=CH2)CMe2NMePh] ( II ) is superimposed on the slower addition of 2 to the terminal allene carbon atom of I to form gold vinyl complex (IPr)Au[C(=CMe2)CH2NMePh] ( III ). Selective protodeauration of III releases N-methyl-N-(3-methylbut-2-en-1-yl)aniline ( 3 a ) with regeneration of 4 . At high conversion, gold vinyl complex II is competitively trapped by an (IPr)Au+ fragment to form the cationic bis(gold) vinyl complex {[(IPr)Au]2[C(=CH2)CMe2NMePh]}+ ( 6 ).  相似文献   

9.
Reduction of an N-heterocyclic carbene (NHC) adduct of SnCl(2), viz. [(IPr)SnCl(2)] (IPr = :C{N(Dip)C(H)}(2); Dip = 2,6-diisopropylphenyl), with a magnesium(i) dimer, has afforded the first NHC complex of a row 5 element in its diatomic form, [(IPr)Sn[double bond, length as m-dash]Sn(IPr)]; a computational analysis of the complex indicates that it comprises a singlet state, doubly bonded tin(0) fragment, :Sn[double bond, length as m-dash]Sn:, datively bonded by two NHC ligands.  相似文献   

10.
A cool break: 3-Azetidinone and a variety of diynes undergo a cycloaddition reaction catalyzed by Ni/IPr to give dihydroazocine compounds (see scheme; IPr=1,3-bis(2,6-diisopropylphenyl)imidazolidene). The reaction involves a challenging C?sp?2?C?sp?3 bond cleavage step, yet, surprisingly, proceeds at low temperature.  相似文献   

11.
Reaction of the d9-d9 Ni(I) monochloride dimer, [(IPr)Ni(mu-Cl)]2 (1), with NaN(SiMe3)2 and LiNHAr (Ar = 2,6-diisopropylphenyl) gives the novel monomeric, 2-coordinate Ni(I) complexes (IPr)Ni{N(SiMe3)2} (2) and (IPr)Ni(NHAr) (3). Reaction of 2 with Cp2Fe+ results in its 1-e- oxidation followed by beta-Me elimination to give a base-stabilized iminosilane complex [(IPr)Ni(CH3){kappa1-N(SiMe3)=SiMe2.Et2O}][BArF4] (6). Oxidation of 3 gives [(IPr)Ni(eta3-NHAr)(THF)][BArF4] (4), which upon loss of THF affords dimeric [(IPr)Ni(N,eta3:NHC6iPr2H3)]2[BArF4]2 (5).  相似文献   

12.
We report the synthesis of structurally tunable boron complexes supported by N‐heterocyclic imine ligands IPr=N?BR2 (IPr=[(HCNDipp)2C], Dipp=2,6‐iPr2C6H3, R=Cl and/or Ph) that have the ability to abstract dihydrogen from amine‐boranes, and instigate their dehydrocoupling. In one instance, mild heating of the hydrogen addition product IPr=NH?B(Ph)HCl releases H2 to regenerate the starting N‐heterocyclic iminoborane; accordingly IPr=N?B(Ph)Cl can be used as a metal‐free catalyst to promote the dehydrocoupling of MeNH2 ? BH3 to yield N‐methylaminoborane oligomers [MeNH‐BH2]x.  相似文献   

13.
The olefinic C−H bond functionalization of (NHC)CHPh (NHC=IPr=C{(NAr)CH}2 1 ; SIPr=C{(NAr)CH2}2 2 ; Ar=2,6-iPr2C6H3), derived from classical N-heterocyclic carbenes (NHCs), with PCl3 affords the dichlorovinylphosphanes {(NHC)C(Ph)}PCl2 (NHC=IPr 3 , SIPr 4 ). Two-electron reduction of 3 and 4 with magnesium leads to the formation of the divinyldiphosphenes [{(NHC)C(Ph)}P]2 (NHC=IPr 5 , SIPr 6 ) as crystalline solids. Unlike literature-known diphosphenes, which are mostly yellow or orange, 5 is a green whereas 6 is a purple solid. Although the P=P bond lengths of 5 (2.062(1)) and 6 (2.055(1) Å) are comparable to those of the known diphosphenes (2.02–2.08 Å), the C−P bond lengths of 5 (1.785(1)) and 6 (1.797(1) Å) are, however, considerably shorter than a C −P single bond length (1.85 Å), indicating a considerable π-conjugation between C=C and P=P moieties. The HOMO–LUMO energy gap for 5 (4.15) and 6 (4.52 eV) is strikingly small and thus the narrowest among the diphosphenes (>4.93 eV) reported as yet. Consequently, 5 readily undergoes P=P bond cleavage at room temperature on treatment with sulfur to form the unique dithiophosphorane {(IPr)C(Ph)}P(S)2 7 . Interestingly, reaction of 5 with selenium gives the selenadiphosphirane [{(IPr)C(Ph)}P]2Se 8 with an intact P−P bond.  相似文献   

14.
An exceptionally low coordinate nickel imido complex, (IPr*)Ni═N(dmp) (2) (dmp = 2,6-dimesitylphenyl), has been prepared by the elimination of N2 from a bulky aryl azide in its reaction with (IPr*)Ni(η6-C7H8) (1). The solid-state structure of 2 features two-coordinate nickel with a linear C?Ni?N core and a short Ni?N distance, both indicative of multiple-bond character. Computational studies using density functional theory showed a Ni═N bond dominated by Ni(dπ)?N(pπ) interactions, resulting in two nearly degenerate singly occupied molecular orbitals (SOMOs) that are Ni?N π* in character. Reaction of 2 with CO resulted in nitrene-group transfer to form (dmp)NCO and (IPr*)Ni(CO)3 (3). Net C?H insertion was observed in the reaction of 2 with ethene, forming the vinylamine (dmp)NH(CH═CH2) (5) via an azanickelacyclobutane intermediate, (IPr*)Ni{N,C:κ2-N(dmp)CH2CH2} (4).  相似文献   

15.
Monomeric copper(I) alkyl complexes that possess the N-heterocyclic carbene (NHC) ligands IPr, SIPr, and IMes [IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, SIPr = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene, IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene] react with amines or alcohols to release alkane and form the corresponding monomeric copper(I) amido, alkoxide, or aryloxide complexes. Thermal decomposition reactions of (NHC)Cu(I) methyl complexes at temperatures between 100 and 130 degrees C produce methane, ethane, and ethylene. The reactions of (NHC)Cu(NHPh) complexes with bromoethane reveal increasing nucleophilic reactivity at the anilido ligand in the order (SIPr)Cu(NHPh) < (IPr)Cu(NHPh) < (IMes)Cu(NHPh) < (dtbpe)Cu(NHPh) [dtbpe = 1,2-bis(di-tert-butylphosphino)ethane]. DFT calculations suggest that the HOMO for the series of Cu anilido complexes is localized primarily on the amido nitrogen with some ppi(anilido)-dpi(Cu) pi-character. [(IPr)Cu(mu-H)]2 and (IPr)Cu(Ph) react with aniline to quantitatively produce (IPr)Cu(NHPh)/dihydrogen and (IPr)Cu(NHPh)/benzene, respectively. Analysis of the DFT calculations reveals that the conversion of [(IPr)Cu(mu-H)]2 and aniline to (IPr)Cu(NHPh) and dihydrogen is favorable with DeltaH approximately -7 kcal/mol and DeltaG approximately -9 kcal/mol.  相似文献   

16.
The monomeric Cu(I) complexes (IPr)Cu(Z) (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, Z = NHPh, OEt, or OPh) react with YH (Y = PhNH, PhCH2NH, EtO, or PhO) to catalytically add Y-H bonds across the C=C bond of electron-deficient olefins to yield anti-Markovnikov organic products. Catalytic activity has been observed for olefins CH2C(H)(X) with X = CN, C(O)Me, or CO2Me as well as crotononitrile. Preliminary studies implicate an intermediate in which the C-Y bond forms through a nucleophilic addition pathway.  相似文献   

17.
Treatment of [(IPr)Pd(Cl)(2)(PR(2)H)] (IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene; R = Cy, tBu, or 1-Ad) with NaN(SiMe(3))(2) generated isolable [(IPr)Pd(PR(2)Cl)] complexes (68-75%) that have been crystallographically characterized. The formation of these mixed-ligand Pd(0) species in this manner corresponds to an unusual net dehydrohalogenation/P-Cl reductive elimination sequence.  相似文献   

18.
N‐Heterocyclic carbenes (NHCs) can serve as very reactive nucleophilic catalysts and exhibit strong basicity. Herein, we initiate a combined experimental and computational investigation of the NHC‐catalyzed ring‐closing reactions of 4‐(2‐formylphenoxy)but‐2‐enoate derivatives 1 to uncover the relationship between the counteranion of an azolium salt, the nucleophilicity and basicity of the carbene species, and the catalytic performance of the carbene species by taking imidazolium salts IPr ? HX (X=counteranion, IPr=1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene) as the representative precatalysts. The plausible mechanisms of IPr‐mediated ring‐closing reactions have been investigated by using DFT calculations. The hydrogen‐accepting ability, assigned as the basicity of the counteranion of IPr ? HX and evaluated by DFT calculations, is correlated with the rate of deprotonation of C2 in IPr ? HX, which could be monitored by the capture of the free carbene formed in situ with elemental sulfur. The deprotonation of C2 in IPr ? HX with a more basic anion gives rise to a higher concentration of the free carbene and vice versa. At a relatively low concentration, IPr prefers to show a nucleophilic character to induce the intramolecular Stetter reaction. At a relatively high concentration, IPr primarily acts as a base to afford benzofuran derivatives. These data comprehensively disclose, for the first time, that the counteranions of azolium salts significantly influence not only the catalytic activity, but also possibly the reaction mechanism.  相似文献   

19.
The synthesis, structural characterization, and reactivity of the first two‐coordinate cobalt complex featuring a metal–element multiple bond [(IPr)Co(NDmp)] ( 4 ; IPr=1,3‐bis(2′,6′‐diisopropylphenyl)imidazole‐2‐ylidene; Dmp=2,6‐dimesitylphenyl) is reported. Complex 4 was prepared from the reaction of [(IPr)Co(η2‐vtms)2] (vtms=vinyltrimethylsilane) with DmpN3. An X‐ray diffraction study revealed its linear C? Co? N core and a short Co? N distance (1.691(6) Å). Spectroscopic characterization and calculation studies indicated the high‐spin nature of 4 and the multiple‐bond character of the Co? N bond. Complex 4 effected group‐transfer reactions to CO and ethylene to form isocyanide and imine, respectively. It also facilitated E? H (E=C, Si) σ‐bond activation of terminal alkyne and hydrosilanes to produce the corresponding cobalt(II) alkynyl and cobalt(II) hydride complexes as 1,2‐addition products.  相似文献   

20.
The synthesis, structural characterization, and reactivity of the first two‐coordinate cobalt complex featuring a metal–element multiple bond [(IPr)Co(NDmp)] ( 4 ; IPr=1,3‐bis(2′,6′‐diisopropylphenyl)imidazole‐2‐ylidene; Dmp=2,6‐dimesitylphenyl) is reported. Complex 4 was prepared from the reaction of [(IPr)Co(η2‐vtms)2] (vtms=vinyltrimethylsilane) with DmpN3. An X‐ray diffraction study revealed its linear C Co N core and a short Co N distance (1.691(6) Å). Spectroscopic characterization and calculation studies indicated the high‐spin nature of 4 and the multiple‐bond character of the Co N bond. Complex 4 effected group‐transfer reactions to CO and ethylene to form isocyanide and imine, respectively. It also facilitated E H (E=C, Si) σ‐bond activation of terminal alkyne and hydrosilanes to produce the corresponding cobalt(II) alkynyl and cobalt(II) hydride complexes as 1,2‐addition products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号