首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reaction of L {L = [24]aneS8, [28]aneS8} with two molar equivalents of [Cu(NCMe)4]X (X = ClO4, BF4, PF6) in MeCN affords the white binuclear copper(I) complexes [Cu2(L)]2+. A single crystal X-ray structure determination of [CU2([24]aneS8)](BF4)2 shows two tetrahedral copper(I) centres, each of which is coordinated to four thioether sulphur-donors, Cu---S(1) = 2.263(3), Cu---S(4) = 2.363(3), Cu---S(7) = 2.349(3), Cu---S(10) = 2.261(3) Å. The Cu … Cu distance is 5.172(3) Å. A single crystal X-ray structure determination Of [CU2([28]aneS8)](ClO4)2 shows that this complex also contain two tetrahedral copper(I) centres, each coordinated to four thioether sulphur-donors, Cu---S(1) = 2.278(5), Cu---S(4) = 2.333(5), Cu---S(8) = 2.328(5), CU---S(11) = 2.268(5) Å. The Cu … Cu distance of 6.454(3) Å is greater than in [CU2([24]aneS8)]2+ , reflecting the greater cavity size in [CU2([28]aneS8)]2+. Cyclic voltammetry of [CU2([24]aneS8)]2+ and [CU2([28]aneS8)]2+ at platinum electrodes in MeCN (0.1 M nBU4NPF6) shows irreversible oxidations at Epa, = +0.88 V, +0.92 V vs Fc/Fc+, respectively, at a scan rate of 200 mV s−1. Coulometric measurements in MeCN confirm these oxidations to be two-electron (one electron per copper) processes to give binuclear copper(II) species. Oxidation of the binuclear copper(I) precursors with H2SO4 or HNO3 affords ESR-active copper(II) species which presumably incorporate SO42− and NO3 bridges.  相似文献   

2.
Raman Batheja  Ajai K. Singh 《Polyhedron》1997,16(24):4337-4345
The nucleophile [ArTe] generated in situ borohydride solution of Ar2Te2, reacts with 2-(chloromethyl) tetrahydrofuran and 2-(2-bromoethyl)-1,3-dioxolane resulting in L1 and L2, respectively. The complexes of palladium(II) and platinum(II) with L1/L2 having stoichiometries [MCl2·L2], [ML2](ClO4)2, [(DPPE)ML2](ClO)4)2, [(PPh3)2ML2](ClO4)2 and [(phen)ML2](ClO4)2 (where L = L1/L2 DPPE = Ph2PC H2CH2PPh2, PHEN = 1,10-phenanthroline and M = Pd/Pt) have been synthesized. IR, 1H, 125Te{1H} and 31P{1H} NMR and UV-vis spectral data of these species in conjunction with their molar conductance and molecular weight data have been used to authenticate the new species. In all complexes (1–20) the ligands L1 and L2 are coordinated through tellurium and in the complexes of formula [ML2](ClO4)2 (M = Pd, Pt) the ligand is bidentate with the oxygen atom used in complexation. In solution, complexes PtCl2L2 exist as a mixture of cis and trans isomers whereas only the trans isomer was observed for the palladium analogues. The [(phen)PdL2](ClO4)2(Q) quenches 1O2 readily. The plot of log [Q] vs time is linear. Mechanism compatible with the experimental observations is proposed.  相似文献   

3.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

4.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

5.
Reaction of [Pt25-C5Me5)2(η-Br)3]3+(Br)3 with C5R5H (R = H,Me) in the presence of AgBF4 gives the first platinocenium dications, [Pt(η5-C5Me5)(η5-C5R5)]2+(BF4 )2. On electrochemical reduction, [pt(η5-C5Me5)2]2+ yields [Pt(η4-C5Me5H)(η2-C5Me5)]+ BF4. kw]Cyclopentadienyl; Metallocenes; Platinum; Electrochemistry  相似文献   

6.
The reaction of {HB(Me2pz)3}Mo(NCS)(S4) [HB(Me2pz)3 = hydrotris(3,5-dimethylpyrazolyl)borate anion] with dicarbomethoxyacetylene in refluxing toluene results in the formation of the brown, diamagnetic complex {HB(Me2pz)3}Mo(NCS){S2C2(CO2Me)2} (1) (the reactants above also yield 1 upon prolonged reaction in dichloromethane at 25°C), which has been characterized by X-ray crystallography. The mononuclear pseudo-octahedral complex contains a facially tridentate HB(Me2pz)3 ligand, a monodentate N-bound NCS ligand, and a bidentate S2C2(CO2Me)22− ligand having a near planar MoS2C4 fragment and a SC=CS bond distance of 1.342(15) Å. Solutions of 1 are unstable in air and decompose to produce {HB(Me2pz)3}MoO2(NCS) and {HB(Me2pz)3}MoO(NCS)2.  相似文献   

7.
Treatment of the diaminobenzene [C6H4{CH2NMe2}2-1,3] (NCN-H, 1) with one or two equivalents of cis-PtCl2(DMSO)2 leads to exclusive formation of the doubly cycloplatinated species [C6H4{CH2NMe2}2-1,5-{PtCl(DMSO)}2-2,4] (3), which upon addition of triphenylphosphine yields the bisphosphine adduct [C6H4{CH2NMe2}2-1,5-{PtCl(PPh3)}2-2,4] (4). The X-ray molecular structure of 4 revealed the presence of highly distorted square planar Pt(II) centers which is caused by close proximity of the two phosphine donor ligands. Complexes of type 3 can be regarded as suitable starting materials for the directional build-up of larger macromolecular structures.  相似文献   

8.
Reaction of [18]aneS6 with two molar equivalents of [Cu(NCMe)4](ClO4) in CH2Cl2-MeCN affords the binuclear copper(I) complex [Cu2([18]aneS6)(NCMe)2](ClO4)2. The single crystal X-ray structure of the complex shows a centrosymmetric cation with two tetrahedral copper(I) centres each coordinated to three thioether S-donors of [18]aneS6,Cu---S(1) = 2.3200(15), Cu---S(4) = 2.3415(16), Cu---S(7) = 2.3250(15) Å, and to one MeCN molecule, Cu---N(1) = 1.939(5) Å, to give an overall NS3-donation at the metal centres. Additionally, S(7′) shows a long-range interaction, Cu …S(7′) = 3.318(2) Å thus distorting the coordination geometry of the metal ion towards trigonal bipyramidal. The metal-metal separation of 4.428(2) Å suggests that there is no significant interaction between the copper centres of the dimer. Reaction of [9]aneS3 with one molar equivalent of [Cu(NCMe)4](ClO4) in refluxing MeCN in the presence of ligands, L, affords the adducts [Cu([9]aneS3)L]+ (L = PPh3, AsPh3). The single crystal X-ray structure of the complex [Cu([9]aneS3)(AsPh3)](ClO4) shows tetrahedral AsS3 coordination at copper(I) with [9]aneS3 bound facially to the metal centre, Cu---S = 2.303(6), Cu---As = 2.322(4) Å.  相似文献   

9.
Reaction of the activated mixture of Re2(CO)10, Me3NO and MeOH with a 1:1 mixture of rac (d/l)- and meso-1,1,4,7,10,10-hexaphenyl-1,4,7,10-tetraphosphadecane (hptpd) yields a mixture of (d/l)- and meso-[{Re2(μ-OMe)2(CO)6}2(μ,μ′-hptpd)] 1. The diastereomers can be easily separated by selective dissolution of d/l-1 in benzene, and give clearly distinguishable 1H- and 31P-NMR spectra. The fluxional behavior of d/l-1 in solution has been studied by variable-temperature 1H- and 31P-{1H}-NMR spectroscopy. The crystal structures of both d/l- and meso-1 have been determined. Both molecules consist of two {Re2(μ-OMe)2(CO)6} moieties which are bridged by the two P---CH2---CH2---P moieties of the hptpd ligand. Whilst the molecules of meso-1 possess crystallographic i-symmetry, those of d/l-1 do not have any crystallographic symmetry. These diastereomers therefore give clearly distinguishable Raman spectra in the solid state. Reaction of tris[2-(diphenylphosphino)ethyl]phosphine (tdppep) with the activated mixture affords the complex [{Re2(μ-OMe)2(CO)6}(μ,η2-tdppep)] 2, and the analogous reaction involving bis[2-diphenylphospinoethyl)phenylphosphine (triphos) gives [{Re2(μ-OMe)2(CO)6}(μ,μ′,η3-triphos){Re2(CO)9}] 3 and [{Re2(μ-OMe)2(CO)6}(μ,η2-triphos)] 4.  相似文献   

10.
A study has been carried out of the catalytic activity of the systems formed by [HRh{P(OPh)3}4] or [HRh(CO){P(OPh)3}3] with the modifying ligands P(OPh)3, PPh3, diphos and Cp2Zr(CH2PPh2)2 in hydroformylation of hex-1-ene (at p = 5 bar). The best results were obtained with the system [HRh{P(OPh)3}4]+Cp2Zr(CH2PPh2)2 (75–85% yeild of aldehydes).  相似文献   

11.
The synthesis and reactivity of {(η5-C5H4SiMe3)2Ti(CCSiMe3)2} MCl2 (M = Fe: 3a; M = Co: 3b; M = Ni: 3c) is described. The complexes 3 are accessible by the reaction of (η5-C5H4SiMe3) 2Ti(CSiMe3)2 (1) with equimolar amounts of MCl2 (2) (M = Fe, Co, Ni). 3a reacts with the organic chelat ligands 2,2′-dipyridyl (dipy) (4a) or 1,10-phenanthroline (phen) (4b) in THF at 25°C to afford in quantitative yields (η5-C5H4SiMe3)2Ti(CSiMe3)2 (1) and [Fe(dipy)2]Cl2 (5a) or [Fe(phen)2]Cl2 (5b). 1/n[CuIHal]n (6) or 1/n[AgIHal]n (7) (Hal = Cl, Br) react with {(η5 -C5H4SiMe3)2Ti(CCSiMe3)2}FeCl2 (3a), by replacement of the FeCl2 building block in 3a, to yield the compounds {(η5-C5H4SiMe3)2Ti(C CSiMe3)2}CuIHal (8) or {(η5-C5H4SiMe3)2Ti(CSiMe3)2}AgIHal (9) (Hal = Cl, Br), respectively. In 8 and 9 each of the two Me3SiCC-units is η2-coordinated to monomeric CuI Hal or AgIHal moieties. Compounds 8 and 9 can also be synthesized by the reaction of (η5-C5H4SiMe3)2 Ti(CSiMe3)2 (1) with 1/n[CuIHal]n (6) or 1/n [AgIHal]n (7) in excellent yields. All new compounds have been characterized by analytical and spectroscopic data (IR, 1H-NMR, MS). The magnetic moments of compounds 3 were measured.  相似文献   

12.
De-Dong Wu  Thomas C. W. Mak 《Polyhedron》1994,13(24):3333-3339
Two polymeric mercury(II) halide adducts of an olefinic double betaine, cis-(p-Me2NC5H4N+)2C2(COO)2 (L), have been prepared and characterized by X-ray crystallography. [{Hg2L2Cl4·6HgCl2}n] (1) crystallizes in the monoclinic space group C2/c with Z = 4, and [{Hg2L2Br4·HgBr2}n] (2) in the triclinic space group P with Z = 1. Complexes 1 and 2 are structurally similar, being composed of centrosymmetric fourteen-membered rings and nearly linear HgX2 (X = Cl, Br) moieties that are further inter-linked by weak HgX [HgCl = 2.930–3.136(9) Å, HgBr = 3.057–3.310(6) Å] and HgO [2.64, 2.75(3) Å] bonds to generate a two-dimensional polymeric network.  相似文献   

13.
A series of Cu(II) complexes of disubstituted 2,2′-bipyridine bearing ammonium groups [Cu(L1−4)2Br]5+ (1–4, L1 = [5,5′-(Me2NHCH2)2-bpy]2+, L2 = [5,5′-(Me3NCH2)2-bpy]2+, L3 = [4,4′-(Me2NHCH2)2-bpy]2+, L4 = [4,4′-(Me3NCH2)2-bpy]2+ and bpy = 2,2′-bipyridyl) were synthesized, of which complexes 1 and 4 were structurally characterized. Both coordination configurations of Cu(II) ions can be described as distorted trigonal bipyramid. The interaction between all complexes and CT-DNA was evaluated by thermal-denaturation experiments and CD spectroscopy. Results show that the complexes interact with CT-DNA via outside electrostatic interactions and their binding ability follows the order: 1 > 2 > 3 > 4. In the absence of any reducing agents, the cleavage of plasmid pBR322 DNA by these complexes was investigated and the hydrolysis kinetics of DNA was studied in Tris buffer (pH 7.5) at 37 °C. Obtained pseudo-Michaelis–Menten kinetic parameters: 15.0, 13.6, 2.01 and 1.69 h−1 for 1, 2, 3 and 4, respectively, indicate that complexes 1 and 2 exhibit very high DNA cleavage activities. According to their crystal data, the high nuclease activity may be attributed to the strong interaction of the metal moiety and two ammonium groups with phosphate groups of DNA.  相似文献   

14.
The title compounds react with unidentate ligands, L, containing either phosphorus or arsenic donor atoms to yield the corresponding compounds of the type Ru(η5---C5Me4Et)(CO)LX; with didentate phosphorus donor ligands the major species formed is the bridged complex {Ru(η5---C5Me4Et)(CO)X}2{Ph2P(CH2)nPPh 2} n = 1, X = Br; n = 2, X = Cl). In contrast, unidentate ligands containing nitrogen donor atoms such as pyridine did not react with Ru(η5---C5Me4Et)(CO)2Cl although reaction with 1,10-phenanthroline or diethylenetriamine yielded the ionic products [Ru(η5---C5Me4Et)(CO)L]+Cl (L = phen or (NH2CH2CH2)2NH). Reaction of Ru(η5---C5Me4Et)(CO)2Br with AgOAc yielded the corresponding acetato complex Ru(η5---C5Me4Et)(CO)20Ac. Ru(η5--- C5Me4Et)(CO)2X reacts with AgY (Y = BF4 or PF6) in either acetone or dichloromethane to give the useful solvent intermediates [Ru(η5---C5Me4Et)(CO)2(solvent)]+Y, which readily react with ligands L to yield ionic derivatives of the type [Ru(η5---C5Me4Et)(CO)2L]+Y (where L = CO, NCMe, py, C2H4 or MeO2CCCCO2Me).  相似文献   

15.
The structures of the versatile starting compounds for organoiron complexes, the cationic aqua complex [(η5-C5Me4Et)Fe(CO)2(OH2)]BF4 (1b) and the halide complexes (η5-C5Me5)Fe(CO)2-I (2a), (η5-C5Me4Et)Fe(CO)2-I (2b) and (η5-C5Me4Et)Fe(CO)2-Cl (3b), are characterized by X-ray crystallography. Complex 1b [Fe---O: 2.022(8) Å and 2.043(9) Å, two independent molecules] is the first structurally characterized example of organoiron aqua complexes. Details of the synthetic procedures for the above complexes and the labile cationic THF complexes [η5-C5R5)Fe(CO)2(THF)]BF4 (4) are disclosed, and the dissociation equilibrium of 4 is confirmed by means of variable temperature 1H-NMR as well as saturation transfer experiment.  相似文献   

16.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

17.
Nest-shaped cluster [MoOICu3S3(2,2′-bipy)2] (1) was synthesized by the treatment of (NH4)2MoS4, CuI, (n-Bu)4NI, and 2,2′-bipyridine (2,2′-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P21/n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2′-bipy ligand. The non-linear optical (NLO) property of [MoOICu3S3(2,2′-bipy)2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its 2 and n2 values were calculated as 6.2×10−10 and −3.8×10−17 m2 W−1 in a 3.7×10−4 M DMF solution.  相似文献   

18.
The reaction of [(CO)PPh3)2Re(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)] (2) with HBF4-Me2O generates [(CO)PPh3)2Re(μ- H)2(μ,η12HNCHPh)Ru(PPh3)2(PhCN)][BF4] (3). Monitoring the reaction by NMR spectroscopy shows the intermediate formation of [(CO)(PPh3)2 HRe(μ-H)2(μ-NCHPh)Ru(PPh3)2(PhCN)][BF4] (4). Attempted reduction of the imine ligand by a nucleophile (H or CN) failed, regenerating 2. Under dihydrogen at 50 atm, 3 is slowly transformed into [(CO)(PPh3)2HRe(μ-H)3Ru(PPh3)2(PhCN)][BF4] (5) with liberation of benzyl amine.  相似文献   

19.
The neutral nitrogen-bidentate ligand, diphenylbis(3,5-dimethylpyrazol-1-yl)methane, Ph2CPz′2, can readily be obtained by the reaction of Ph2CCl2 with excess HPz′ in a mixed-solvent system of toluene and triethylamine. It reacts with [Mo(CO)6] in 1,2-dimethoxyethane to give the η2-arene complex, [Mo(Ph2CPz′2)(CO)3] (1). This η2-ligation appears to stabilize the coordination of Ph2CPz′ 2 in forming [Mo(Ph2CPz′2)(CO)2(N2C6H4NO2-p)][BPh4] (2) and [Mo(Ph2CPz′2)(CO)2(N2Ph)] [BF4] (3) from the reaction of 1 with the appropriate diazonium salt but the stabilization seems not strong enough when [Mo{P(OMe)3} 3(CO)3] is formed from the reaction of 1 with P(OMe)3. The solid-state structures of 1 and 3 have been determined by X-ray crystallography: 1-CH2Cl2, monoclinic, P21/n, a = 11.814(3), b = 11.7929(12), c = 19.46 0(6) Å, β = 95.605(24)°, V = 2698.2(11) Å3, Z = 4, Dcalc = 1.530 g/cm3 , R = 0.044, Rw = 0.036 based on 3218 reflections with I > 2σ(I); 2 (3)-1/2 hexane-1/2 CH3OH-1/2 H2O-1 CH2Cl2, monoclinic, C2/c, a = 41.766(10), b = 20.518(4), c = 16.784(3) Å, β = 101.871(18)°, V = 14076(5) Å3, Z = 8, Dcalc = 1.457 g/cm3, R = 0.064, Rw = 0.059 based on 5865 reflections with I > 2σ(I). Two independent cations were found in the asymmetric unit of the crystals of 3. The average distance between the Mo and the two η2-ligated carbon atoms is 2.574 Å in 1 and 2.581 and 2.608 Å in 3. The unfavourable disposition of the η2-phenyl group with respect to the metal centre in 3 and the rigidity of the η2-arene ligation excludes the possibility of any appreciable agostic C---H → Mo interaction.  相似文献   

20.
The cluster [Os3(CO)10(MeCN)2] reacts with 2,2′-dipyridyl disulphide (1, pySSpy) to give a range of oxidative addition products which were separated by TLC on silica and crystallization : [Os3(pyS)2(CO)10] (2), [Os3(pyS)2(CO)9] (3), [Os2(pyS)2(CO)6] (4) and [Os(pyS)2(CO)2] (5), together with some of the hydride [Os3H(pyS)(CO)9] (6), which is not an expected oxidative addition product. The X-ray crystal structures of compounds 2, 3, 4 and 6 (compounds 2 and 6 occurring within a single crystal), together with the known structure of compound 5, reveal several modes of pyS bonding : chelating pyS, μ2-pyS (both sulphur-bonded and nitrogen, sulphur-bonded) and μ3-pyS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号