首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3,3-Dimethylbutanol-2 (3,3-DMB-ol-2) and 2,3-dimethylbutanol-2 (2,3-DMB-ol-2) have been decomposed in comparative-rate single-pulse shock-tube experiments. The mechanisms of the decompositions are The rate expressions are They lead to D(iC3H7? H) – D((CH3)2(OH) C? H) = 8.3 kJ and D(C2H5? H) – D(CH3(OH) CH? H) = 24.2 kJ. These data, in conjunction with reasonable assumptions, give and The rate expressions for the decomposition of 2,3-DMB-1 and 3,3-DMB-1 are and   相似文献   

2.
Rate constants have been determined at (298 ± 4) K for the reactions: and the relaxation processes: Time-resolved HF(1,0) emission was observed following the photolysis of F2 with pulses from an excimer laser operating on XeCl (λ = 308 nm). Analysis of the emission traces gave first-order constants for reaction and relaxation, and their dependence on [H2O] and [HCN] yielded:   相似文献   

3.
The reactions where Y = CH3 (M), C2H5 (E), i? C3H7 (I), and t? C4H9 (T) have been studied between 488 and 606 K. The pressures of CHD ranged from 16 to 124 torr and those of YE from 57 to 625 torr. These reactions are homogeneous and first order with respect to each reagent. The rate constants (in L/mol·s) are given by The Arrhenius parameters are used as a test for a biradical mechanism and to discuss the endo selectivity of the reactions.  相似文献   

4.
The kinetics of the gamma-radiation-induced free radical chain reaction in solutions of C2Cl3F in cyclohexane (RH) was investigated over a temperature range of 87.5–200°C. The following rate constants and rate constant ratios were determined for the reactions: In competitive experiments in ternary solutions of C2Cl4 and C2Cl3F in cyclohexane the rate constant ratio k2c/k2a was determined By comparing with previous data for the addition of cyclohexyl radicals to other chloroethylenes it is shown that in certain cases the trends in activation energies for cyclohexyl radical addition can be correlated with the C? Cl bond dissociation energies in the adduct radicals.  相似文献   

5.
Pulsed laser photolysis/laser-induced fluorescence (LIF) is utilized to measure absolute rate constants of CH radical reactions as a function of temperature and pressure. Multiphoton dissociation of CHBr3 at 266 nm is employed for the generation of CH (X2Π) radicals. The CH radical relative concentration is monitored by exciting fluorescence on the R1(2) line of the (A2Δ – X2Π) transition at 429.8 nm. A resistively heated cell allows temperature studies to be performed from room temperature to ≈?670 K. The following Arrhenius equations are derived: With the exception of SF6, the reactions of sulfur containing species proceed at rates that are near the theoretical gas kinetic collision frequency. Additionally, these reactions all have activation energies that are near zero or slightly negative. These observations are consistent with an insertion-decomposition mechanism being dominant under these conditions.  相似文献   

6.
Cyclopentane has been decomposed in comparative-rate single-pulse shock-tube experiments. The pyrolytic mechanism involves isomerization to 1-pentene and also a minor pathway leading to cyclopropane and ethylene. This is followed by the decomposition of 1-pentene and cyclopropane. The rate expressions over the temperature range of 1000°–1200° K are Details of the cyclopentane decomposition processes are considered, and it appears that if the trimethylene radical is an intermediate, then ΔHf(trimethylene) ≤ 280 kJ/mol at 300°K.  相似文献   

7.
Metastable N2(A3Σu+), υ = 0, υ = 1, molecules are produced by a pulsed Tesla-type discharge of a dilute N2/Ar gas mixture. Rate coefficients for quenching these metastable levels by O2, O, N, and H were obtained by time-resolved emission measurements of the (0, 6) and (1, 5) Vegard–Kaplan bands. In units of cm3/mole · sec at 300°K and with an experimental uncertainty of ±20%, these rate coefficients for N2(A3Σu+) are Within the limits of error these coefficients apply to quenching N2(A3Σu+) υ′ = 1 as well.  相似文献   

8.
The overall reaction (1) occurs readily in the gas phase, even at room temperature in the dark. The reaction is much faster than the corresponding process and does not involve the normal bromination mechanism for gas phase reactions. Reaction (1) is probably heterogeneous although other mechanisms cannot be excluded. The overall reactions (1) (2) proceed, for all practical purposes, completely to the right-hand side in the vapor phase. The expected mechanism is (3) (4) (5) (6) (7) where reaction (3) is initiated thermally or photochemically. Reaction (4) is of interest because little kinetic data are available on reactions involving abstraction of halogen by halogen and also because an accurate determination of the activation energy E4 would prmit us to calculate an acccurate value of the bond dissociation energy D(CH3? I).  相似文献   

9.
The kinetics of the thermal reaction between CF3OF and C3F6 have been investigated between 20 and 75°C. It is a homogeneous chain reaction of moderate length where the main product is a mixture of the two isomers 1-C3F7OCF3 (68%) and 2-C3F7OCF3 (32%). Equimolecular amounts of CF3OOF3 and C6F14 are formed in much smaller quantities. Inert gases and the reaction products have no influence on the reaction, whereas only small amounts of oxygen change the course of reaction and larger amounts produce explosions. The rate of reaction can be represented by eq. (I): The following mechanism explains the experimental results: Reaction (5) can be replaced by reactions (5a) and (5b), without changing the result: Reaction (4) is possibly a two-step reaction: For ∣CF3 = ∣C3F6∣, ν20°C = 36.8, ν50°C = 24.0, and ν70°C = 14.2.  相似文献   

10.
The flash photolysis of biacetyl produces CO, C2H6, and CH3COCH3 as main products, and in small amounts CO2, C2H4, and CH3CHO. The rate constants of reactions (2) and (3) of thermally equilibrated radicals were calculated from the amounts of products: .  相似文献   

11.
The thermal isomerization of cis-hexatriene (cHT) to cyclohexadiene (CHD) and the dimerization of CHD and trans-hexatriene (tHT) in the liquid phase in the temperature range 380 K-473 K are reported. The rate coefficients are: for the cHT to CHD isomerization for tHT dimerizationlog and for CHD dimerization; endo form exo form © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The thermal decomposition of butene-2-cis at low conversion and its effect on the pyrolysis of propane have been studied in the temperature range 779-812 K. It was established that 2-butene decomposes in a long-chain process, with the chain cycle (Besides the radical path, the molecular reaction can also play a role in the formation of the products.) The thermal decomposition of propane is considerably inhibited by 2-butene, which can be explained by the fact that the less reactive radicals formed in the reactions between the olefin and the chain-carrying radicals regenerate the chain cycle more slowly than the original radicals in the above chain cycle or in the reactions The reactions of the 2-propyl radical are further initiation steps. The ratios of the rate coefficients of the elementary steps of the decomposition (Table III) have been determined via the ratios of the products. Estimation of the radical concentrations indicated that only the methyl, 2-propyl and methylallyl radicals are of importance in the chain termination. On the basis of the inhibition-influenced curves, the role of the bimolecular initiation steps. could be clarified in the presence of 2-butene.  相似文献   

13.
The kinetics of the thermal bromination reaction have been studied in the range of 173–321°C. For the step we obtain where θ=2.303RT cal/mole. From the activation energy for reaction (11), we calculate that This is compared with previously published values of D(CF3?I). The relevance of the result to published work on kc for a combination of CF3 radicals is discussed.  相似文献   

14.
The formation and consumption of CH radicals during shock-induced pyrolysis of a few ppm ethane diluted in argon was measured by a ring-dye laser spectrometer. Absorption-over-time profiles, measured at a resonance line in the Q-branch of the A2Δ − X2Π band of CH at λ = 431.1311 nm, were recorded and transformed into CH concentrations by known absorption coefficients. By adding some hundred ppm of CO2 or O2 to the initial mixtures, the CH concentration profiles were significantly perturbed. Both the perturbed and unperturbed CH concentration profiles have been compared with calculations based on a reaction kinetic model. A sensitivity analysis revealed that the perturbation process was dominated by direct reactions of CH with the added molecules. By fitting calculated to observed CH profiles the following rate coefficients were obtained The experiments were performed in the temperature range between 2500 K and 3500 K. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
On the basis of the thermal decomposition of mixtures of propylene and propane with molar ratios of 0.0–0.33 in the temperature range 779–812K, the influencing functions describing the inhibition by propylene of the decomposition of propane were determined. The rate-reducing effect is explained mainly by the reactions (in which .R = .H, .CH3 and 2-?3H7) and also by the addition reactions It was established that the bulk of the allyl radicals formed participate in the chain step, but, due to their lower reactivity, they restore the decomposition chain more slowly than the original radicals do. From the characteristic change in the ratio υ/υ, the rate ratios of hydrogenabstraction reaction by radicals from propylene and propane could be determined. In these reactions there was no significant difference between the selectivities of the radicals. For an interpretation of the changes, the decomposition mechanism must be completed with the reaction Evaluation of the influencing curves revealed that the initiation reactions must be taken into account. By parameter estimation we have determined the rate ratios characterizing the above initiation reactions, the unimolecular decomposition of propane, hydrogen abstraction by radicals from propane and propylene, intermolecular isomerization of the 2-propyl radical via propane and propylene, and abstraction of propane hydrogens by the ethyl and methyl radicals; these are given in Tables II.  相似文献   

16.
2,4-Dimethylhexene-l has been decomposed in single-pulse shock tube experiments. Rate expressions for the initial reactions are and sec?1 at 1.5–5 atm and 1050°K. This leads to ΔH°f300 (CH2 = C(CH3)CH2) = 124 kJ/mol, or an allylic resonance energy of 50 kJ/mol. Rate expressions for the decomposition of the appropriate olefins which yield isobutenyl radicals and methyl, ethyl, isopropyl, n-propyl, t-butyl, and t-amyl radicals, respectively, are presented. The rate expression for the decomposition of isobutenyl radical is (at the beginning of the fall-off region). For the combination of isobutenyl and methyl radicals, the rate constant at 1020°K is Combination of this number and the calculated rate expression for 2-methylbutene-1 decomposition gives S. (1100) = 470 J/mol °K. This yields It is demonstrated that an upper limit for the rate of hydrogen abstraction by isobutenyl from toluene is   相似文献   

17.
The abstraction of hydrogen and deuterium from 1,2-dichloroethane, 1,1,2-trichloroethane, and two of their deuterated analogs by photochemically generated ground state chlorine atoms has been investigatedin the temperature range 0–95°C using methane as a competitor. Rate constants and their temperature coefficients are reported for the following reactions Over the temperature range of this investigation an Arrhenius law temperature dependence was observed in all cases. Based on the adopted rate coefficient for the chlorination of methane [L.F. Keyser, J. Chem. Phys., 69 , 214 (1978)] which is commensurate with the present temperature range, the following rate constant values (cm3 s?1) are obtained: The observed pure primary, and mixed primary plus α- and β3-secondary kinetic isotope effects at 298 K are k3/k6 = 2.73 ± 0.08, and k1/k2 = 4.26 ± 0.12, respectively. Both show a normal temperature dependence decreasing to k3/k6 = 2.39 ± 0.06 and k1/k2 = 3.56 ± 0.09 at 370 K. Contrary to some simple theoretical expectations, the kinetic isotope effect for H/D abstraction decreases with increasing number of chlorine substituents in the geminal group in a parallel manner to the trend established previously for C1-substitution in the adjacent group. The occurrence of a β-secondary isotope effect, k4/k5, is established; this effect suggests a slight inverse temperature dependence.  相似文献   

18.
A transformation exists which allows the general Riccati equation to be written in a simpler form: The transformed equation has the equivalent nonlinear Hammerstein integral equation if the kernel N(r, r′) satisfies three conditions: and and A solution of the nonlinear integral equation is devised by repeatedly integrating the Hammerstein equation. During this procedure the kernel generates an equation that contains only coefficients of β(r)0 and β(r)1. As a result, after truncating at the end of the nth cycle, it is a simple matter to write down a Padé-type approximation: all coefficients in this approximation are capable of being evaluated in terms of simple algebraic formulations of P(r), R(r), and integrals over P(r). The zeroes of the denominator of the Padé-type approximation define the points where singularities occur in β(r).  相似文献   

19.
Tertiary-amyl amine has been decomposed in single-pulse shock-tube experiments. Rate expressions for several of the important primary steps are This leads to D(CH3? H) – D(NH2? H) = ?10.5 kJ and D[(CH3)3C? H] – D[(CH3)2NH2C? H] = + 6 kJ. The present and earlier comparative rate single-pulse shock-tube data when combined with high-pressure hydrazine decomposition results-(after correcting for fall off effects through RRKM calculations) gives where kr(…) is the recombination rate involving the appropriate radicals. This suggests that in this context amino radical behavior is analogous to that of alkyl radicals. If this agreement is exact, then Rate expressions for the primary step in the decomposition of a variety of primary amines have been computed. In the case of benzyl amine where data exist the agreement is satisfactory. The following differences in bond energies have been estimated:   相似文献   

20.
A method is described for the measurement of relative rate constants for abstraction of hydrogen from ethylene at temperatures in the region of 750 K. The method is based on the effect of the addition of small quantities of propane and isobutane on the rates of formation of products in the thermal chain reactions of ethylene. On the assumption that methane and ethane are formed by the following reactions, (1) measurements of the ratio of the rates of formation of methane and ethane in the presence and absence of the additive gave the following results: Values for k2 and k3 obtained from these ratios are compared with previous measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号