首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the increased demand for new reference materials certified for total and methylmercury (MeHg) a sample of mussel homogenate (IAEA-142) has been prepared. Thirteen experienced laboratories reported results for total Hg of which 9 laboratories also reported results for MeHg content. Laboratories reporting MeHg results used various isolation techniques (solvent extraction, saponification, acid leaching, ion-exchange separation, and distillation) and detection systems (cold vapour atomic absorption spectrometry (CV AAS), cold vapour atomic fluorescence spectrometry (CV AFS), gas chromatography with electron capture detector (GC/ECD) and HPLC with CV AAS detector). In the case of total Hg, most of the laboratories used acid digestion, only two used alkaline dissolution, followed either by CV AAS or CV AFS. One laboratory used neutron activation analyses with radiochemical separation. The data received were in good agreement. The value for total Hg was certified to be 126 ng/g, with a 95% confidence interval from 119 to 132 ng/g. For MeHg the certified value of 47 ng/g expressed as Hg was assigned, with a 95% confidence interval from 43 to 51 ng/g. Stability testing has shown that both total and MeHg are stable if samples are stored in a dry and dark place at room temperature. The sample is now available as a certified reference material and is, in particular, useful for quality control measurements of Hg and MeHg in mussel samples at low concentration levels.  相似文献   

2.
Due to the increased demand for new reference materials certified for total and methylmercury (MeHg) a sample of mussel homogenate (IAEA-142) has been prepared. Thirteen experienced laboratories reported results for total Hg of which 9 laboratories also reported results for MeHg content. Laboratories reporting MeHg results used various isolation techniques (solvent extraction, saponification, acid leaching, ion-exchange separation, and distillation) and detection systems (cold vapour atomic absorption spectrometry (CV AAS), cold vapour atomic fluorescence spectrometry (CV AFS), gas chromatography with electron capture detector (GC/ECD) and HPLC with CV AAS detector). In the case of total Hg, most of the laboratories used acid digestion, only two used alkaline dissolution, followed either by CV AAS or CV AFS. One laboratory used neutron activation analyses with radiochemical separation. The data received were in good agreement. The value for total Hg was certified to be 126 ng/g, with a 95% confidence interval from 119 to 132 ng/g. For MeHg the certified value of 47 ng/g expressed as Hg was assigned, with a 95% confidence interval from 43 to 51 ng/g. Stability testing has shown that both total and MeHg are stable if samples are stored in a dry and dark place at room temperature. The sample is now available as a certified reference material and is, in particular, useful for quality control measurements of Hg and MeHg in mussel samples at low concentration levels. Received: 24 September 1996 / Revised: 20 November 1996 / Accepted: 8 December 1996  相似文献   

3.
An intercomparison exercise was organized between seven laboratories using various isolation procedures (extraction, distillation, ion-exchange and alkaline digestion) and detection systems (CV AAS, cold vapour atomic absorption spectroscopy; CV AFS, cold vapour atomic fluorescence spectroscopy; GC, ECD, gas chromatography electron capture detector and HPLC with CV AFS detection) for determination of methylmercury compounds in sediment sample. All certification criteria were fulfilled and therefore the value for total concentration of methylmercury compounds was certified to be 5.46 ng g?1, with a 95% confidence interval from 4.07–5.84 ng g?1. The acceptable range, calculated as two times the confidence interval of the mean is therefore from 4.68–6.23 ng g?1. This is the first sediment reference material ever to be certified for concentration of methylmercury compounds. Comparison of the data obtained by various methodologies has shown that the most critical step is the isolation of methylmercury compounds from binding sites. Acid leaching only cannot release methylmercury compounds quantitatively. Total release of methylmercury compounds could only be achieved by alkaline digestion or distillation. This simple intercomparison exercise has shown that since large numbers of laboratories world-wide are performing methylmercury compound analyses using various improved and specific separation methods and sensitive detection systems, certification of methylmercury compounds in different biological and environmental samples should not be a problem in the future.  相似文献   

4.
Because of increasing awareness of the potential neurotoxicity of even low levels of organomercury compounds, analytical techniques are required for determination of low concentrations of ethylmercury (EtHg) and methylmercury (MeHg) in biological samples. An accurate and sensitive method has been developed for simultaneous determination of methylmercury and ethylmercury in vaccines and biological samples. MeHg and EtHg were isolated by acid leaching (H2SO4–KBr–CuSO4), extraction of MeHg and EtHg bromides into an organic solvent (CH2Cl2), then back-extraction into Milli-Q water. MeHg and EtHg bromides were derivatized with sodium tetrapropylborate (NaBPr4), collected at room temperature on Tenax, separated by isothermal gas chromatography (GC), pyrolysed, and detected by cold-vapour atomic fluorescence spectrometry (CV AFS). The repeatability of results from the method was approximately 5–10% for EtHg and 5–15% for MeHg. Detection limits achieved were 0.01 ng g−1 for EtHg and MeHg in blood, saliva, and vaccines and 5 ng g−1 for EtHg and MeHg in hair. The method presented has been shown to be suitable for determination of background levels of these contaminants in biological samples and can be used in studies related to the health effects of mercury and its species in man. This work illustrates the possibility of using hair and blood as potential biomarkers of exposure to thiomersal.  相似文献   

5.
The purpose of the study was to optimise analytical methods for determination of the chemical speciation of mercury in studies of protective mechanisms of selenium. Optimisation of the methods was performed using CRM DOLT-2 (Dogfish liver), both in its original form and after separation of various fractions. The sample was homogenised with 10 mM Tris-HCl buffer (pH 7.6) and ultracentrifuged. The soluble phase obtained was applied to a size exclusion chromatography column (Sephadex G-75 column) for separation of various protein fractions. Total mercury (total Hg), monomethyl mercury (MeHg) and selenium (Se) were determined in whole dogfish liver tissue and its soluble and insoluble phases (pellet). Different approaches for determination of total Hg and MeHg were compared. Simultaneous determination of MeHg and inorganic mercury (Hg2+) was based on alkaline dissolution and/or acid leaching, followed by ethylation, room temperature precollection, isothermal gas chromatography (GC), pyrolysis and detection with cold vapour atomic fluorescence spectrometry (CVAFS). The sum of MeHg and Hg2+ was compared to total Hg results obtained by acid digestion and CVAAS detection. The accuracy of MeHg determination was checked by its determination using acid leaching at room temperature, solvent extraction, back extraction into Milli-Q water, ethylation, GC and CVAFS detection. For the insoluble phase it is recommended to use solvent extraction for MeHg and acid digestion CVAAS for total Hg. For determination of MeHg and Hg2+ in the lyophilised sample and water soluble fractions containing low concentrations of mercury species, the simultaneous measurement of MeHg and Hg2+ after alkaline dissolution is the most appropriate method.  相似文献   

6.
The purpose of the study was to optimise analytical methods for determination of the chemical speciation of mercury in studies of protective mechanisms of selenium. Optimisation of the methods was performed using CRM DOLT-2 (Dogfish liver), both in its original form and after separation of various fractions. The sample was homogenised with 10 mM Tris-HCl buffer (pH 7.6) and ultracentrifuged. The soluble phase obtained was applied to a size exclusion chromatography column (Sephadex ¶G-75 column) for separation of various protein fractions. Total mercury (total Hg), monomethyl mercury (MeHg) and selenium (Se) were determined in whole dogfish liver tissue and its soluble and insoluble phases (pellet). Different approaches for determination of total Hg and MeHg were compared. Simultaneous determination of MeHg and inorganic mercury (Hg2+) was based on alkaline dissolution and/or acid leaching, followed by ethylation, room temperature precollection, isothermal gas chromatography (GC), pyrolysis and detection with cold vapour atomic fluorescence spectrometry (CVAFS). The sum of MeHg and Hg2+ was compared to total Hg results obtained by acid digestion and CVAAS detection. The accuracy of MeHg determination was checked by its determination using acid leaching at room temperature, solvent extraction, back extraction into Milli-Q water, ethylation, GC and CVAFS detection. For the insoluble phase it is recommended to use solvent extraction for MeHg and acid digestion CVAAS for total Hg. For determination of MeHg and Hg2+ in the lyophilised sample and water soluble fractions containing low concentrations of mercury species, the simultaneous measurement of MeHg and Hg2+ after alkaline dissolution is the most appropriate method.  相似文献   

7.
Horvat M  Byrne AR  May K 《Talanta》1990,37(2):207-212
A simple modification of the West?? extraction procedure for methylmercury and its determination by gas chromatography (GC) is presented. The cysteine clean-up step has been modified, with use of cysteine-impregnated paper instead of cysteine solution. Methylmercury bromide is extracted from the sample into toluene and is selectively adsorbed on the cysteine paper. Interfering compounds are washed from the paper with toluene. The isolated methylmercury is set free with sulphuric acid containing bromide, extracted into benzene and determined by GC. The modification of the extraction procedure results in good recovery and reproducibility for various biological and environmental samples, good sensitivity with a detection limit of 0.1 ng/g, avoidance of difficulties arising from emulsion formation, cleaner chromatograms, and faster analysis. It is particularly suitable for determination of low levels of MeHg.  相似文献   

8.
张英  任旺  李敏娇 《电化学》2012,(1):79-83
研究柠檬酸(CA)修饰玻碳电极(CA/GC)在抗坏血酸(AA)、多巴胺(DA)和尿酸(UA)混合体系中的循环伏安(CV)行为.结果表明,AA、DA和UA在CA/GC电极上氧化峰电流增大,且三者氧化峰电位明显分离(ΔEp(DA,AA)=170 mV,ΔEp(DA,UA)=130 mV,ΔEp(AA,UA)=300 mV).据此,可同时检测AA、DA和UA.在优化的实验条件下,AA、DA和UA的氧化峰电流与其浓度分别在2.0×10-6~1.5×10-3mol.L-1,6.0×10-7~1.0×10-3mol.L-1和6.0×10-7~1.0×10-3mol.L-1范围内呈线性关系.该电极重现性好,可用于盐酸多巴胺针剂DA、VC片剂AA及人体尿液UA的测定.  相似文献   

9.
Liang L  Horvat M  Cernichiari E  Gelein B  Balogh S 《Talanta》1996,43(11):1883-1888
A solvent extraction technique involving no critical clean-up steps was developed for the determination of methylmercury (MeHg) in environmental and biological samples by aqueous phase ethylation, room temperature precollection, gas chromatographic separation and cold vapor atomic fluorescence spectrometric detection. Samples were first digested with KOH-methanol. then acidified prior to extraction with methylene chloride. MeHg was back-extracted from the solvent phase into water prior to aqueous phase ethylation. Recoveries close to 100% were obtained with RSDs less than 5% for all samples analyzed, making direct standardization possible. The detection limits were about 0.08 ng g(-1) when analyzing 0.1 g of dry sea plant homogenate and 0.02 ng g when analyzing 0.5 g of wet sediment samples. Various certified reference materials and intercomparison samples, including sediments, sea plants and tissues, were analyzed, and the results were in good agreement with the certified values. The technique was applied to the determination of MeHg in both sea plants from the Atlantic and the red blood protein of dolphins from the Mediteranean Sea. in sediments from the Mediterranean Sea and Minnesota rivers and in soils from different origins. Concentrations of MeHg in dolphin red blood protein samples were as high as 300 ng g(-1).  相似文献   

10.
A new double-spiking approach, based on a multiple-spiking numerical methodology, has been developed and applied for the accurate quantification of inorganic mercury (IHg) and methylmercury (MeHg) by GC–ICPMS in different environmental matrices such as water, sediments and a wide range of biological tissues. For this purpose, two enriched mercury species (201MeHg and 199IHg) were added to the samples before sample preparation in order to quantify the extents of the methylation and demethylation processes, and thereby correct the final species concentrations. A critical evaluation of the applicability of this methodology was performed for each type of matrix, highlighting its main advantages and limitations when correcting for the conversion reactions of the species throughout the whole sample preparation procedure. The double-spike isotope dilution (DSIDA) methodology was evaluated by comparing it with conventional species specific isotope dilution (IDA) when analysing both certified reference materials and environmental samples (water, biotissues and sediment). The results demonstrate that this methodology is able to provide both accurate and precise results for IHg and MeHg when their relative concentrations are not too different (ratio MeHg/IHg > 0.05), a condition that holds for most natural waters and biotissues. Significant limitations on the accurate and precise determination of the demethylation factor are however observed, especially for real sediment samples in which the relative concentrations of the species are substantially different (ratio MeHg/IHg < 0.05). A determination of the sources of uncertainty in the methylation/demethylation factors has demonstrated that the accurate and precise measurement of the isotope ratios in the species involved in the transformations is crucial when quantifying the extents of these reactions. Although the double-spike methodology is established as a reference approach that permits the correction of most analytical biases and the accurate quantification of Hg species, some limitations have been identified for the first time in this work.  相似文献   

11.
The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg(2+)) and monomethylmercury compounds (MeHg) in natural water samples at the pg L(-1) level. The method is based on the simultaneous extraction of MeHg and Hg(2+)dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na(2)S, removal of H(2)S by purging with N(2), subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L(-1) for MeHg and 0.06 ng L(-1) for Hg(2+)when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg(2+). Recoveries were 90-110% for both species.  相似文献   

12.
Distillation was re‐evaluated for the formation of artifacts arising from increasing naturally occurring mercury(II) concentrations, as opposed to previous identification of artifacts by spiking standard mercury(II) into samples. Naturally occurring mercury(II) concentrations lower than 2 µg g?1 were found not to affect methylmercury (MeHg) results. However, when the natural concentrations of mercury(II) were greater than 2 µg g?1, in contrast to standard mercury(II) spiked in samples, the MeHg concentrations measured were found to decrease (not increase) with increasing naturally occurring mercury(II) concentrations. This indicated that standard mercury(II) spiked in samples behaved differently from naturally occurring mercury(II) in the formation of MeHg artifacts during distillation. As a result, spiking standard mercury(II) into samples to identify the formation of MeHg artifacts is not adequate. It is difficult to explain why high naturally occurring mercury(II) suppresses MeHg measurements during distillation. In comparison with HNO3 leaching/solvent extraction (and other existing techniques), distillation was found to generate results comparable for samples containing less than 2 µg g?1 mercury(II). The HNO3 leaching/solvent extraction showed significant advantages over other procedures, as this technique generated the highest recoveries with good precision for all samples analyzed, and the results were found to be independent of mercury(II) concentrations for both naturally occurring and spiked standard mercury(II). Thus, except for samples from high mercury‐contaminated fields, distillation is still a good choice. Both the positive bias (possibly caused by artifact formation of MeHg) and the negative bias (due to incomplete leaching, back‐adsorption, and/or decomposition of MeHg) were investigated. Geologically, physically, and chemically different samples were used for the investigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
 Aqueous samples from the Florida Everglades present several problems for the analysis of total mercury (HgT) and methyl mercury (MeHg). Constituents such as dissolved organic carbon (DOC) and sulfide at selected sites present particular challenges due to interferences with standard analytical techniques. This is manifested by 1) the inability to discern when bromine monochloride (BrCl) addition is sufficient for sample oxidation for HgT analysis; and 2) incomplete spike recoveries using the distillation/ethylation technique for MeHg analysis. Here, we suggest ultra-violet (UV) oxidation prior to addition of BrCl to ensure total oxidation of DOC prior to HgT analysis and copper sulfate (CuSO4) addition to aid in distillation in the presence of sulfide for MeHg analysis. Despite high chloride (Cl-) levels, we observed no effects on MeHg distillation/ethylation analyses. Received: 24 September 1996/Revised: 12 February 1997/Accepted: 19 February 1997  相似文献   

14.
Polycyclic aromatic hydrocarbons (PAHs) are frequently measured in the atmosphere for air quality assessment, in biological tissues for health-effects monitoring, in sediments and mollusks for environmental monitoring, and in foodstuffs for safety reasons. In contemporary analysis of these complex matrices, gas chromatography (GC), rather than liquid chromatography (LC), is often the preferred approach for separation, identification, and quantification of PAHs, largely because GC generally affords greater selectivity, resolution, and sensitivity than LC. This article reviews modern-day GC and state-of-the-art GC techniques used for the determination of PAHs in environmental samples. Standard test methods are discussed. GC separations of PAHs on a variety of capillary columns are examined, and the properties and uses of selected mass spectrometric (MS) techniques are presented. PAH literature on GC with MS techniques, including chemical ionization, ion-trap MS, time-of-flight MS (TOF-MS), and isotope-ratio mass spectrometry (IRMS), is reviewed. Enhancements to GC, for example large-volume injection, thermal desorption, fast GC, and coupling of GC to LC, are also discussed with regard to the determination of PAHs in an effort to demonstrate the vigor and robustness GC continues to achieve in the analytical sciences.  相似文献   

15.
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.  相似文献   

16.
A method for the extraction and determination of methylmercury (MeHg) in solid matrices is presented. Combining the advantages of two extraction techniques—subcritical water extraction (subWE) and solid‐phase microextraction (SPME)—selective separation of MeHg from soils is possible. The procedure is based on extraction with subcritical water without using organic solvents, followed by in situ aqueous‐phase derivatization with sodium tetraethylborate and headspace SPME with a silica fiber coated with poly(dimethylsiloxane). The optimization of the extraction parameters is described. The identification and quantification of the extracted alkylmercury compounds from spiked soil samples is performed by GC–MS after thermal desorption. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
A method for the determination of different mercury species in whole blood is described. Inorganic mercury (InHg) was determined in 2 ml of standard solutions or blood samples using head space (HS) injection coupled to atomic absorption spectrometry (AAS) after treatment with concentrated sulfuric and tin(II) chloride as a reductant agent in a closed HS vial. After stirring, the InHg was converted to elementary mercury and carried with a nitrogen flow through a quartz cell heated at 200 degrees C and the absorbance signal was evaluated by AAS. For the determination of methylmercury (MeHg), 2 ml of a standard solution or a blood sample were treated with 10 mg of iodoacetic acid and 0.4 ml of concentrated H2SO4. Then, the MeHg species were HS-injected into a gas chromatograph (GC), separated on a semicapillary column (AT-1000) with a flow of helium, then carried to the quartz cell heated at 1000 degrees C and detected by AAS. The high content of salts in blood samples, where sodium chloride is the major component (0.14 mol l-1), affected the gas-liquid distribution coefficient of both mercury species in the HS vial. A linear calibration graph was obtained in the ranges 1-20 and 1-125 micrograms Hg l-1 added as InHg and MeHg, respectively. The detection limits for InHg and MeHg were 0.6 and 0.2 microgram Hg l-1, respectively. The relative standard deviations for eleven independent measurements were 5% for both mercury species. Recovery values ranging from 98 to 106% for InHg and from 95 to 105% for MeHg and from 93 to 95% for ethylmercury (EtHg) were obtained. The accuracy of the proposed method was also established by the analysis of certified whole blood samples for InHg and MeHg. No difference between the sum of these two species determined by our procedure and the recommended total mercury concentrations in the certified samples was observed. Results for the determination of MeHg and InHg in 30 controls and 30 dentists are presented to illustrate the practical utility of the proposed method.  相似文献   

18.
《Analytical letters》2012,45(9):1647-1671
Abstract

Poly(chlorinated) dibenzo‐p‐dioxins and dibenzofurans (PCDDs/PCDFs) are persistent organic pollutants which are globally distributed in practically all environmental compartments and which exert a broad spectrum of toxic and biochemical effects. Humans are exposed to these compounds mainly through the diet with food of animal origin usually being the predominant source.

Multiple step isolation and clean up procedures are necessary to determine trace levels of these analytes in complex environmental and biological samples. This article reviews some of the recent developments in the extraction procedures, such as SFE, PLE, HS‐SPME, MAE, SCWE, ASE; clean‐up areas and instrumental analysis of dioxins in biological/environmental samples. Due to its specificity and sensitivity gas chromatography coupled with high resolution mass spectrometry (GC–HRMS), high‐resolution gas chromatography high‐resolution mass spectrometry (HRGC‐HRMS), or GC‐MS/GC techniques have been extensively applied to environmental, medicinal, and biological studies.  相似文献   

19.
A review of sample preparation methods for organic acids in biological fluids, in particular serum and urine, is presented. It covers techniques on organic acid determination without sample preparation, release of organic acids from binding locations, removal of proteins by protein precipitation and ultrafiltration, isolation of the organic acids by liquid-liquid and liquid-solid extraction, purification of the extract, derivatization and pre-fractionation. The various alternative sample preparation steps are compared and critically discussed. Examples of applications including profile analysis of organic acids by gas chromatography (GC), determination of particular organic acids by GC or liquid chromatography and determination of fatty acids as a distinct chemical class of acids demonstrate that the kind of sample preparation chosen depends strongly on the analytical aims.  相似文献   

20.
In this paper, a novel automatic approach for the speciation of inorganic mercury (Hg(2+)), methylmercury (MeHg(+)) and ethylmercury (EtHg(+)) using multisyringe chromatography (MSC) coupled to cold-vapor atomic fluorescence spectrometry (CV/AFS) was developed. For the first time, the separation of mercury species was accomplished on a RP C18 monolithic column using a multi-isocratic elution program. The elution protocol involved the use of 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (99:1, v/v), followed by 0.005% 2-mercapthoethanol in 240 mM ammonium acetate (pH 6)-acetonitrile (90:10, v/v). The eluted mercury species were then oxidized under post-column UV radiation and reduced using tin(II) chloride in an acidic medium. Subsequently, the generated mercury metal were separated from the reaction mixture and further atomized in the flame atomizer and detected by AFS. Under the optimized experimental conditions, the limits of detection (3σ) were found to be 0.03, 0.11 and 0.09 μg L(-1) for MeHg(+), Hg(2+) and EtHg(+), respectively. The relative standard deviation (RSD, n=6) of the peak height for 3, 6 and 3 μg L(-1) of MeHg(+), Hg(2+) and EtHg(+) (as Hg) ranged from 2.4 to 4.0%. Compared with the conventional HPLC-CV/AFS hyphenated systems, the proposed MSC-CV/AFS system permitted a higher sampling frequency and low instrumental and operational costs. The developed method was validated by the determination of a certified reference material DORM-2 (dogfish muscle), and was further applied for the determination of mercury species environmental and biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号