首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immune system is concerned with the recognition and disposal of foreign or "non self" molecules or cells that enter the body of an immunologically competent individual. The generation of an immune response depends on the interaction of components, namely, the immunogen (nonself or foreign cell or molecule), antibody producing humoral immune system, and sensitized lymphocyte producing cellular immune system. An immunogen possesses surface structures referred to as epitopes; the precise pattern of each epitope enables an individual's immune system to recognize cells or molecules as self or immunogens. During the recognition process, the specific cells known as macrophages identify the epitope structures on the immunogen and save them in the form of short peptides 10-18 amino-acids-long known as immune dominant peptides (IDPs). IDPs are then bound with surface proteins on macrophages known as MHC protein complexes. The macrophages then present this IDP-MHC complex to a T cell that possesses a specific receptor that is specific for the foreign epitope on the IDP bound to MHC complex. This initiates an immune system cascade that results in the disposal of the immunogen. The study and accurate prediction of T-cell epitopes is, thus, very important for designing vaccines against pathogenic diseases. The present study applied the newly developed biosupport vector machine to the T-cell epitope data. This new algorithm introduces a biobasis function into the conventional support vector machines so that the nonnumerical attributes (amino acids) in protein sequences can be recognized without a feature extraction process, which often fails to properly code the biological content in protein sequences. The prediction accuracy of a 10-fold cross validation is 90.31%, compared with 87.86% using support vector machines reported as the best compared with other algorithms in an earlier study.  相似文献   

2.
Major Histocompatibility Complex (MHC) is a cell surface glycoprotein that binds to foreign antigens and presents them to T lymphocyte cells on the surface of Antigen Presenting Cells (APCs) for appropriate immune recognition. Recently, studies focusing on peptide-based vaccine design have allowed a better understanding of peptide immunogenicity mechanisms, which is defined as the ability of a peptide to stimulate CTL-mediated immune response. Peptide immunogenicity is also known to be related to the stability of peptide-loaded MHC (pMHC) complex. In this study, ENCoM server was used for structure-based estimation of the impact of single point mutations on pMHC complex stabilities. For this purpose, two human MHC molecules from the HLA-B*27 group (HLA-B*27:05 and HLA-B*27:09) in complex with four different peptides (GRFAAAIAK, RRKWRRWHL, RRRWRRLTV and IRAAPPPLF) and three HLA-B*44 molecules (HLA-B*44:02, HLA-B*44:03 and HLA-B*44:05) in complex with two different peptides (EEYLQAFTY and EEYLKAWTF) were analyzed. We found that the stability of pMHC complexes is dependent on both peptide sequence and MHC allele. Furthermore, we demonstrate that allele-specific peptide-binding preferences can be accurately revealed using structure-based computational methods predicting the effect of mutations on protein stability.  相似文献   

3.
Antigenic peptides or cancer peptide vaccines can be directly delivered to cancer patients to produce immunologic responses against cancer cells. Specifically, designed peptides can associate with Major Histocompatibility Complex (MHC) class I or II molecules on the cell surface of antigen presenting cells activating anti-tumor effector mechanisms by triggering helper T cell (Th) or cytotoxic T cells (CTL). In general, high binding to MHCs approximately correlates with in vivo immunogenicity. Consequently, a molecular docking technique was run on a library of novel discontinuous peptides predicted by PEPOP from Human epidermal growth factor receptor 2 (HER2 ECD) subdomain III. This technique is expected to improve the prediction accuracy in order to identify the best MHC class I and II binder peptides. Molecular docking analysis through GOLD identified the peptide 1412 as the best MHC binder peptide to both MHC class I and II molecules used in the study. The GOLD results predicted HLA-DR4, HLA-DP2 and TCR as the most often targeted receptors by the peptide 1412. These findings, based on bioinformatics analyses, can be exploited in further experimental analyses in vaccine design and cancer therapy to find possible proper approaches providing beneficial effects.  相似文献   

4.
Exosomes are small membrane vesicles secreted from various types of cells. Tumor-derived exosomes contain MHC class I molecules and tumor-specific antigens, receiving attention as a potential cancer vaccine. For induction of efficient anti-tumor immunity, CD4+ helper T cells are required, which recognize appropriate MHC class II-peptide complexes. In this study, we have established an MHC class II molecule-expressing B16F1 murine melanoma cell line (B16F1- CIITA) by transduction of the CIITA (Class II transactivator) gene. Exosomes from B16-CII cells (CIITA- Exo) contained a high amount of MHC class II as well as a tumor antigen TRP2. When loaded on dendritic cells (DCs), CIITA-Exo induced the increased expression of MHC class II molecules and CD86 than the exosomes from the parental cells (Exo). In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced the splenocyte proliferation and IL-2 secretion. Consistently, compared to B16-Exo, CIITA-Exo induced the increased mRNA levels of inflammatory cytokines such as TNF-α, chemokine receptor CCR7 and the production of Th1-polarizing cytokine IL-12. A tumor preventive model showed that CIITA-Exo significantly inhibited tumor growth in a dose-dependent manner. Ex vivo assays using immunized mice demonstrated that CIITA-Exo induced a higher amount of Th1-polarized immune responses such as Th1-type IgG2a antibodies and IFN-γ cytokine as well as TRP2-specific CD8+ T cells. A tumor therapeutic model delayed effects of tumor growth by CIITA-Exo. These findings indicate that CIITA-Exo are more efficient as compared to parental Exo to induce anti-tumor immune responses, suggesting a potential role of MHC class II-containing tumor exosomes as an efficient cancer vaccine.  相似文献   

5.
T淋巴细胞对抗原的识别是产生与调节有效免疫应答的关键, T细胞只识别主要组织相容性复合物(MHC)呈递上来的抗原, 因此MHC与抗原多肽的结合就成为一系列免疫应答过程中基础的一环. 为了辅助疫苗设计, 多种机器学习技术已被普遍应用于MHC结合多肽的预报领域中. 本文以支持向量机(SVM)为手段, 以HLA-A*0201的实验数据集为对象, 对多种肽段编码方法形成的模型进行评价, 得到的AUC值的范围在0.932~0.936之间. 提出一种新的利用抗原多肽结合环境的编码方法, 使预报的AUC值提高到0.953. 对独立数据集进行建模预报, 同样证明环境编码模型的预报准确率高于传统编码方法的准确率.  相似文献   

6.
Function of the antigen transport complex TAP in cellular immunity   总被引:1,自引:0,他引:1  
The immune system consists of several kinds of cells and molecules whose complex interactions form an efficient system for the protection of an individual from outside invaders and its own transformed cells. Innate immunity refers to the immediate antimicrobial response that occurs regardless of the nature of the invader. The adaptive immune system, on the other hand, mounts specialized immune responses to protect the individual against foreign cells from specific invaders or even tumorigenic cells, and provides long-term protection from subsequent exposure to these foreign cells. Antibody production and cell-mediated responses are the two interconnected branches of the adaptive immune system. Antigenic peptides displayed on the cell surface usually activate the cellular immune response. The transporter associated with antigen processing (TAP) plays a key role in the peptide-processing and -presentation pathway. This Review discusses the latest progress in the structure and mechanism as well as the diseases arising from dysfunction of the TAP complex.  相似文献   

7.
Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.  相似文献   

8.
9.
The T-cell receptor of a CD8(+) T-cell recognises peptide epitopes bound by class I major histocompatibility complex (MHC) glycoproteins presented in a groove on their upper surface. Within the groove of the MHC molecule are 6 pockets, two of which mostly display a high degree of specificity for binding amino acids capable of making conserved and energetically favourable contacts with the MHC. One type of MHC molecule, HLA-B*2705, preferentially binds peptides containing an arginine at position 2. In an effort to increase the affinity of peptides for HLA-B*2705, potentially leading to better immune responses to such a peptide, we synthesised two modified epitopes where the amino acid at position 2 involved in anchoring the peptide to the class I molecule was replaced with the alpha-methylated beta,gamma-unsaturated arginine analogue 2-(S)-amino-5-guanidino-2-methyl-pent-3-enoic acid. The latter was prepared via a multi-step synthetic sequence, starting from alpha-methyl serine, and incorporated into dipeptides which were fragment-coupled to resin-bound heptameric peptides yielding the target nonameric sequences. Biological characterisation indicated that the modified peptides were poorer than the native peptides at stabilising empty class I MHC complexes, and cells sensitised with these peptides were not recognised as well by cognate CD8(+) T-cells, where available, compared to those sensitised with the native peptide. We suggest that the modifications made to the peptide have decreased its ability to bind to the peptide binding groove of HLA-B*2705 molecules which may explain the decrease in recognition by cytotoxic T-cells when compared to the native peptide.  相似文献   

10.
Glycopeptides that bind to MHC molecules on antigen presenting cells may elicit carbohydrate selective T cells. In order to investigate how the cellular immune response depends on the size of the carbohydrate moiety, a trigalactosylated derivative of an immunogenic peptide from hen egg-white lysozyme (HEL52-61) was prepared. Synthesis was accomplished by assembly of an alpha-1,4-linked trigalactose peracetate which was coupled to Fmoc serine. After activation as a pentafluorophenyl ester the resulting building block was used in solid-phase synthesis In contrast to the corresponding mono- and digalactosylated derivatives of HEL52-61, the trigalactosylated HEL52-61 was not immunogenic. Somewhat surprisingly, this was found to be because the trigalactosyl derivative bound approximately two orders of magnitude weaker to I-Ak MHC molecules than the mono- and digalactosyl peptides. Our observation suggests an explanation for previous findings, which show that glycopeptides isolated from MHC molecules in nature usually carry small saccharides.  相似文献   

11.
Although macromolecules on cell surfaces are predominantly targeted and drugged with antibodies, they harbor pockets that are only accessible to small molecules and constitutes a rich subset of binding sites with immense potential diagnostic and therapeutic utility. Compared to antibodies, however, small molecules are disadvantaged by a less confined biodistribution, shorter circulatory half‐life, and inability to communicate with the immune system. Presented herein is a method that endows small molecules with the ability to recruit and activate chimeric antigen receptor T cells (CAR‐Ts). It is based on a CAR‐T platform that uses a chemically programmed antibody fragment (cp‐Fab) as on/off switch. In proof‐of‐concept studies, this cp‐Fab/CAR‐T system targeting folate binding proteins on the cell surface mediated potent and specific eradication of folate‐receptor‐expressing cancer cells in vitro and in vivo.  相似文献   

12.
Alpha-galactosylceramides are potent stimulators of human T cells. Stimulation occurs through binding of the glycolipids by CD1d, presentation to T cells, and formation of a CD1d-glycolipid-T cell receptor complex. To facilitate the elucidation of the structural features of glycolipids necessary for T cell stimulation, alpha-galactosylceramides have been prepared with small molecules appended at the C6 position of the sugar. The appended molecules do not significantly influence the abilities of the glycolipids to stimulate T cells. [reaction: see text]  相似文献   

13.
MHC class I peptide complexes (pMHC) are routinely used to enumerate T cell populations and are currently being evaluated as vaccines to tumors and specific pathogens. Herein, we describe the structures of three generations of single-chain pMHC progressively designed for the optimal presentation of covalently associated epitopes. Our ultimate design employs a versatile disulfide trap between an invariant MHC residue and a short C-terminal peptide extension. This general strategy is nondisruptive of native pMHC conformation and T cell receptor engagement. Indeed, cell-surface-expressed MHC complexes with disulfide-trapped epitopes are refractory to peptide exchange, suggesting they will make safe and effective vaccines. Furthermore, we find that disulfide-trap stabilized, recombinant pMHC reagents reliably detect polyclonal CD8 T cell populations as proficiently as conventional reagents and are thus well suited to monitor or modulate immune responses during pathogenesis.  相似文献   

14.
CD4 is a cell surface glycoprotein that acts as a co-receptor for the T cell antigen receptor by binding to a non-polymorphic portion of MHC molecules. CD4 also functions as a receptor for human immunodeficiency virus type-I (HIV-1) because the viral envelope glycoprotein gp120 binds to CD4 with a high affinity. We have previously demonstrated that introduction of mutations into CD4 abolished the binding of gp120 and prevented HIV-1 from entering cells and spreading. However, whether introduction of such mutations into CD4 causes decreased binding to MHC and loss of function is yet to be determined. We generated transgenic mouse lines by injecting a mutant human CD4 (muthCD4) gene under a murine CD4 enhancer/promoter to ensure tissue and stage specific expression. To exclude the influence of endogenous murine CD4, transgenic mice were crossed with murine CD4-targeted mice to produce muthCD4 transgenic mice lacking endogenous CD4 (muthCD4TG/KO mice). In these mice, T lymphocytes expressing muthCD4 expanded and matured in the thymus and were present in the spleen and lymph nodes. They also activated B cells to mount an antibody response to a T-dependent antigen. The results from this study suggest that a human variant of CD4 modified to be resistant to HIV-1 binding can rescue the signaling for T cell development in the thymus in vivo, having helper T cell functions. Thus, further characterization of muthCD4 molecules should open the way to new HIV treatment modalities.  相似文献   

15.
在人工双层膜囊泡表面, 构建了一个通过人工受体的分子识别行为控制酶反应活性的超分子体系. 体系以生物体细胞信号转导系统为模拟原型, 由作为受体的烷基胺、被受体识别的信号分子吡哆醛衍生物、乳酸脱氢酶、受体和酶之间的媒介物Cu2+以及作为体系载体的合成肽脂囊泡五个成分构成.通过UV-vis光谱法及动态光散射测定对体系进行了评价, 结果表明: 随着受体疏水参数增大, 其对信号分子的识别能力增强, 二者呈良好的线性关系; 通过信号分子与囊泡表面静电相互作用的研究表明信号分子具有选择性; 媒介物与信号分子–受体可形成化学计量比为1∶2的配合物, 其形成能力比媒介物与酶的结合能力更强.作为结论, 体系中烷基胺受体对磷酸吡哆醛信号分子的识别有效控制了处于囊泡表面的乳酸脱氢酶的活性.  相似文献   

16.
Peptides bound to MHC molecules on the surface of cells convey critical information about the cellular milieu to immune system T cells. Predicting which peptides can bind an MHC molecule, and understanding their modes of binding, are important in order to design better diagnostic and therapeutic agents for infectious and autoimmune diseases. Due to the difficulty of obtaining sufficient experimental binding data for each human MHC molecule, computational modeling of MHC peptide-binding properties is necessary. This paper describes a computational combinatorial design approach to the prediction of peptides that bind an MHC molecule of known X-ray crystallographic or NMR-determined structure. The procedure uses chemical fragments as models for amino acid residues and produces a set of sequences for peptides predicted to bind in the MHC peptide-binding groove. The probabilities for specific amino acids occurring at each position of the peptide are calculated based on these sequences, and these probabilities show a good agreement with amino acid distributions derived from a MHC-binding peptide database. The method also enables prediction of the three-dimensional structure of MHC-peptide complexes. Docking, linking, and optimization procedures were performed with the XPLOR program [1].  相似文献   

17.
Although macromolecules on cell surfaces are predominantly targeted and drugged with antibodies, they harbor pockets that are only accessible to small molecules and constitutes a rich subset of binding sites with immense potential diagnostic and therapeutic utility. Compared to antibodies, however, small molecules are disadvantaged by a less confined biodistribution, shorter circulatory half-life, and inability to communicate with the immune system. Presented herein is a method that endows small molecules with the ability to recruit and activate chimeric antigen receptor T cells (CAR-Ts). It is based on a CAR-T platform that uses a chemically programmed antibody fragment (cp-Fab) as on/off switch. In proof-of-concept studies, this cp-Fab/CAR-T system targeting folate binding proteins on the cell surface mediated potent and specific eradication of folate-receptor-expressing cancer cells in vitro and in vivo.  相似文献   

18.
In this study, we showed the direct interaction between Mycobacterium avium subsp. paratuberculosis fibronectin attachment protein (FAP) and toll-like receptor4 (TLR4) via co-localization and binding by using confocal microscopy and co-immunoprecipitation assays. FAP triggered the expression of pro- and antiinflammatory cytokines in a TLR4-dependent manner. In addition, FAP-induced cytokine expression in bone marrow-derived dendritic cells (BMDCs) was modulated in part by glycogen synthase kinase-3 (GSK-3). FAP-induced expression of CD80, CD86, major histocompatibility complex (MHC) class I, and MHC class II in TLR4(+/+) BMDCs was not observed in TLR4(-/-) BMDCs. Furthermore, FAP induced DC-mediated CD8(+) T cell proliferation and cytotoxic T lymphocyte (CTL) activity, and suppressed tumor growth with DC-based tumor vaccination in EG7 thymoma murine model. Taken together, these results indicate that the TLR4 agonist, FAP, a potential immunoadjuvant for DC-based cancer vaccination, improves the DC-based immune response via the TLR4 signaling pathway.  相似文献   

19.
T cells of the γδ lineage are unconventional T cells with functions not restricted to MHC-mediated antigen presentation. Because of their broad antigen specificity and NK-like cytotoxicity, γδ T-cell importance in tumor immunology has been emphasized. However, some γδ T-cell subsets, especially those expressing IL-17, are immunosuppressive or tumor-promoting cells. Their cytokine profile and cytotoxicity are seemingly determined by cross-talk with microenvironment components, not by the γδTCR chain. Furthermore, much about the TCR antigen of γδ T cells remains unknown compared with the extreme diversity of their TCR chain pairs. Thus, the investigation and application of γδ T cells have been relatively difficult. Nevertheless, γδ T cells remain attractive targets for antitumor therapy because of their independence from MHC molecules. Because tumor cells have the ability to evade the immune system through MHC shedding, heterogeneous antigens, and low antigen spreading, MHC-independent γδ T cells represent good alternative targets for immunotherapy. Therefore, many approaches to using γδ T cells for antitumor therapy have been attempted, including induction of endogenous γδ T cell activation, adoptive transfer of expanded cells ex vivo, and utilization of chimeric antigen receptor (CAR)-T cells. Here, we discuss the function of γδ T cells in tumor immunology and their application to cancer therapy.Subject terms: Innate immune cells, Tumour immunology  相似文献   

20.
Legionella bacterium, an intracellular pathogen of mononuclear phagocytes, causes acute fatal pneumonia, especially in patients with impaired cellular immune responses. Until recently, however, the toll-like receptor (TLR) engagement of bacterial proteins derived from Legionella is uncertain. We previously showed that a 19-kDa highly conserved peptidoglycan-associated lipoprotein (PAL) of Legionella pneumophila induced the PAL-specific B cell and T cell responses in mice. In this study, we observed that the rPAL antigen of L. pneumophila, as an effector molecule, activated murine macrophages via TLR2 and produced proinflammatory cytokines such as IL-6 and TNF-α. In both BALB/c and TLR4-deficient C3H/HeJ mice, pretreatment of macrophages with anti-TLR2 mAb showed severely impaired cytokine production in response to the rPAL. In addition, in vitro the rPAL treatment increased the cell surface expression of CD40, CD80, CD86 and MHC I/II molecules. We further showed that the synthetic CpG-oligodeoxynucleotides (CpG ODN) coadministered with the rPAL enhanced IL-12 and IL-6 production and expression of CD40, CD80 and MHC II compared to the rPAL treatment alone. In conclusions, these results indicate that Legionella PAL might activate macrophages via a TLR2-dependent mechanism which thus induce cytokine production and expression of costimulatory and MHC molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号