首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The current research work presents a novel nonionic curing agent (AEDA) synthesized by utilizing ethylene glycol diglycidyl ether (EGDE), 3,4-dimethoxyaniline (DI), and triethylenetetramine (TETA). Infrared spectroscopy and nuclear magnetic resonance spectroscopy were used to characterize the structure of AEDA curing agent. Non-isothermal scanning calorimetry was used to determine the activation energy and curing conditions of epoxy resin in the curing process. An impact testing machine, a tensile testing machine and a scanning electron microscope (SEM) were used to analyze the impact strength, tensile strength, bending strength, and micromorphology of the AEDA/E-51 system with different mass ratios. The results show that AEDA is an effective high-temperature curing agent. For the AEDA/E-51 system with the optimal mass ratio of 10:100, the best curing temperature is 92.15°C, and the post-curing temperature is 135.65°C. Furthermore, the apparent activation energy (Ea) of 1670 J/mol, the pre-exponential factor (A) of 3.7 × 10?4, and the reaction series (n) value of 0.76 are obtained for the AEDA/E-51 system. The impact strength of AEDA/E-51 epoxy resin polymer is 7.82 kJ/m2, tensile strength is 14.2 MPa, and bending strength is 18.92 MPa. The micromorphological results of the AEDA/E-51 system are consistent with the results of DSC test and mechanical properties test. Hence, this study provides theoretical support for the practical applications of AEDA as curing agent.  相似文献   

2.
In this paper, a polyether-ether-ketone (PEEK)/epoxy composite was prepared by using PEEK microparticles as the reinforcement. The nonisothermal differential scanning calorimetry (DSC) test was used to evaluate the curing reaction of PEEK/epoxy resin system. The curing kinetics of this system were examined utilizing nonisothermal kinetic analyses (Kissinger and Ozawa), isoconversional methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose) and an autocatalytic reaction model. During these analyses, the kinetic parameters and models were obtained, the curing behavior of PEEK/epoxy resin system under dynamic conditions was predicted. The results show that isoconversional methods can adequately interpret the curing behavior of PEEK/epoxy resin system and that the theoretical DSC curves calculated by the autocatalytic reaction model are in good agreement with experimental data. Furthermore, the tensile elongation at break, tensile strength, flexural strength, compression strength and compression modulus increased by 81.6%, 33.66%, 36.53%, 10.98% and 15.14%, respectively, when PEEK microparticles were added in epoxy resin composites.  相似文献   

3.
In this study, the hyperbranched polyester were successfully grafted onto graphene oxide (GO). The mechanical performance and curing kinetics of epoxy resin (EP), EP/ graphene oxide (EP/GO), and EP/ hyperbranched polyester grafted GO (EP/GO‐B) were investigated by means of mechanical tests and differential scanning calorimetry (DSC). Results revealed that the presence of GO lowered the cure temperature and accelerated the curing of EP, and the addition of GO‐B exhibited a stronger effect in accelerating the cure of EP compared with GO. Activation energies were calculated using Kissinger approach, and Ozawa approach, respectively. Results revealed lowered activation energy after the addition of GO or GO‐B at low degrees of cure, indicating that GO had a large effect on the curing reaction. The presence of GO facilitated the curing reaction, especially the initial epoxy‐amine reaction. Moreover, GO‐B exhibited better performance. Related mechanism was proposed.  相似文献   

4.
Polyaniline sulfate‐zeolite composite was prepared by emulsion polymerization. Epoxy resin was cured using polyaniline‐sulfate salt and various amounts of polyaniline sulfate‐zeolite composite. The kinetics of the cure reaction for an epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) with polyaniline‐sulfate and polyaniline sulfate‐zeolite composite have been studied using differential scanning calorimetry (DSC) under isothermal and dynamic conditions. Isothermal kinetics analysis was performed using the phenomenological model of Kamal. Dynamic kinetic analysis was performed using Kissinger's method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
An attempt has been made to develop hybrid composites from benzoxazine monomer (C-ddm) hybridized with DGEBA epoxy resin (EP) and reinforced with varying weight percentages (20 wt%, 40 wt%, 60 wt%, 80 wt% and 100 wt%) of glycidoxypropyltrimethoxy- silane (GPTMS) functionalized granite dust (GD) obtained from industrial granite cutting and polishing process in order to utilize them for electrical insulation applications. The thermal stability of granite dust reinforced poly(EP-co-C-ddm) composites was studied by TGA analysis. Among the composites samples studied, 100 wt% GD reinforced poly(EP-co-C-ddm) composites possess better thermal stability than that of other neat matrices and composites. Among the composites prepared using varying weight percentages of functionalized GD reinforcement, it was observed that 80 wt% GD reinforced poly(EP-co-C-ddm) composites possesses better hydrophobic character than that of other neat matrices and composites. The value of LOI calculated for neat matrix (poly[EP-co-C-ddm]) and 20 wt%, 40 wt%, 60 wt%, 80 wt% and 100 wt% GD reinforced composites was found to be 22, 28, 34, 40, 43 and 45 respectively. The 80 wt% GD reinforced poly(EP-co-C-ddm) composites possess the higher values of tensile strength and flexural strength of 47 MPa and 140 MPa, respectively than those of their samples. The values of electrical surface resistivity and electrical volume resistivity of all the neat matrices and GD reinforced polybenzoxazine composites were found to be in the order of 1012 and 1013 respectively. The values of dielectric strength obtained from break down voltage (BDV) for neat matrix [poly(EP-co-C-ddm)] and 20 wt%, 40 wt%, 60 wt%, 80 wt% and 100 wt% of GD reinforced poly(EP-co-C-ddm) composites are 15.0, 15.5, 16.5, 17.0, 17.0 and 17.0 kV/mm, respectively. Data obtained from thermal stability, hydrophobic behavior and dielectric studies it was inferred that the hybrid polymer composites developed in the present work can be conveniently used in the form insulators, sealants, adhesives and matrices where application demands at high-performance industrial and engineering applications.  相似文献   

6.
A diglycidyl ether of bisphenol-A (DGEBA) epoxy resin has been stoichiometrically cured with cycloaliphatic amine 4,4′-diamino-3,3′-dimethylcyclohexylmethane (3DCM) and modified with an amine terminated oligomer polyoxypropylenetriamine (POPTA) at a concentration of 15 wt %. Mixtures, postcured at the same temperature, have been precured at different temperatures. Phase separation takes place before gelation at all precure temperatures used. The variation in the glass transition region of the mixtures has been analyzed by dynamic mechanical measurements. Mechanical properties and fracture toughness of the modified mixtures have been related to their microstructural spherical features. Results are compared to those for the unmodified mixtures cured with different precure temperatures. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
官建国 《高分子科学》2010,28(6):961-969
<正>A high performance thermosetting epoxy resin crosslinkable at room temperature was obtained via directly moulding diglycidyl ether of bisphenol A(DGEBA) and flexibleα,ω-bisamino(n-alkylene)phenyl terminated poly(ethylene glycol).The influences of the n-alkylene inserted in aminophenyl of flexible amino-terminated polythers(ATPE) on the mechanical properties,fractographs and curing kinetics of the ATPE-DGEBA cured products were studied.The results show that the insertion of n-alkylene group into the aminophenyl group of the ATPE,on one hand,can significantly increase the strain relaxation rate and decrease glass transition temperature of the ATPE-DGEBA cured products,resulting in slight decrease of the Young's modulus and tensile strength,and significant increase of the toughness and elongation of the ATPE-DGEBA cured products.On the other hand,it can remarkably enhance the reactivity of amine with epoxy,much accelerating the curing rate of the ATPE-DGEBA systems.The activation energy of DGEBA cured by BAPTPE,BAMPTPE and BAEPTPE was 53.1,28.5 and 25.4 kJ·mol~(-1),respectively.The as-obtained ATPE-DGEBA cured products are homogeneous, transparent,and show excellent mechanical properties including tensile strength and toughness.Thus they are promising to have important applications in structure adhesives,casting bulk materials,functional coatings,cryogenic engineering, damping and sound absorbing materials.  相似文献   

8.
《先进技术聚合物》2018,29(4):1287-1293
The surface treatment of ultra‐high molecular weight polyethylene fiber using potassium permanganate and the mechanical properties of its epoxy composites were studied. After treatment, many changes were happened in the fiber surface: more O‐containing groups (―OH, ―C═O, and ―C―O groups), drastically decreased contact angles with water and ethylene glycol, slightly increased melting point and crystallinity, and formed cracks. Different contents (0.1–0.5 wt%) ultra‐high molecular weight polyethylene fibers/epoxy composites were prepared. The results indicated that the surface treatment decreased the tensile strength of epoxy composites, but increased the bending strength. When the fiber content was 0.3 wt%, the above properties reached the maximum. At the same fiber content, the interlaminar shear strength of the composites was increased by 26.6% up to the as‐received fiber composites. Dynamic mechanical analysis of the composites suggested the storage modulus and tanδ were decreased due to the surface treatment. Fractured surface analysis confirmed that the potassium permanganate treatment was effective in improving the interface interaction.  相似文献   

9.
The curing reactions of the epoxy resins tetraglycidyl diaminodiphenyl methane (TGDDM) and tetraglycidyl methylenebis (o-toluidine) (TGMBT) using diaminodiphenyl sulfone (DDS), diaminodiphenyl methane (DDM) and diethylenetriamine (DETA) as curing agents were studied kinetically by differential scanning calorimetry. The dynamic scans in the temperature range 20°–300°C were analyzed to estimate the activation energy and the order of reaction for the curing process using some empirical relations. The activation energy for the various epoxy systems is observed in the range 71.9–110.2 kJ·mol–1. The cured epoxy resins were studied for kinetics of thermal degradation by thermogravimetry in a static air atmosphere at a heating rate of 10 deg·min–1. The thermal degradation reactions were found to proceed in a single step having an activation energy in the range 27.6–51.4 kJ·mol–1.
Zusammenfassung Die Vernetzungsreaktionen der Epoxidharze Tetraglycidyl-diamino-diphenyl-methan (TGDDM) und Tetraglycidyl-methylen-bis(o-toluidin) (TGMBT) unter Verwendung von Diaminodiphenylsulfon (DDS), Diaminodiphenylmethan (DDM) und Diethylentriamin (DETA) als Vernetzungsmittel wurden kinetisch mittels DSC untersucht. Die dynamischen Scans im Temperaturbereich 20°–300°C wurden analysiert, um unter Anwendung einiger empirischer Gleichungen die Aktivierungsenergie und die Reaktionsordnung des Vernetzungsprozesses zu ermitteln. Die Aktivierungsenergie der einzelnen Epoxy-Systeme liegt im Bereich 71.9–110.2 kJ·mol–1. An der ausgehärteten Harze wurde mittels TG in einer statischen Luftatmosphäre un deiner Aufheizgeschwindigkeit von 10 Grad/min die Kinetik des termischen Abbaues untersucht. Man fand, daß die thermiscehn Abbaureaktionen in einem Schritt ablaufen und ihre Aktivierungsenergie im Intervall 27.6–51.4 kJ·mol–1 liegt.
  相似文献   

10.
《印度化学会志》2022,99(11):100772
The incorporation of transition metal oxide fillers into the polymer matrix through solution mixing polymerization imparts enhanced electrical and thermal properties. The present work focused on the optical properties, crystallinity, thermal stability, temperature-dependent conductivity, dielectric constant and modulus of chlorinated polyethylene/copper alumina (CPE/Cu–Al2O3) nanocomposites. Optical absorption measured using an ultraviolet–visible (UV–visible) spectrometer shows enhanced intensity and a blue shift for CPE/Cu–Al2O3 nanocomposites. The bandgap energy of CPE/Cu–Al2O3 nanocomposites was lower than pure CPE and minimum bandgap energy was recorded for a 7 wt% composites. The X-ray diffraction demonstrates that Cu–Al2O3 nanoparticles were uniformly introduced into the CPE matrix. Thermogravimetric analysis (TGA) manifests improved thermal stability of nanocomposites. Dielectric properties decrease with frequency, whereas AC conductivity increases with frequency, and both AC conductivity and dielectric properties increase with temperature. The maximum AC conductivity and dielectric constant were obtained for 7 wt % nanofiller loaded sample. For all systems, the activation energy for electrical conductivity decreases with rising temperatures. The experimental dielectric constant values of CPE nanocomposites were correlated with different theoretical models. The Bruggeman model was in good agreement with the experimental permittivity. The impedance experiments showed a decreasing trend with temperature, indicating the semiconducting nature of prepared nanocomposites.  相似文献   

11.
The curing kinetics of a novel liquid crystalline epoxy resin with combining biphenyl and aromatic ester‐type mesogenic unit, diglycidyl ether of 4,4′‐bis(4‐hydroxybenzoyloxy)‐3,3′,5,5′‐tetramethyl biphenyl (DGE‐BHBTMBP), and the curing agent diaminodiphenylsulfone (DDS) was studied using the advanced isoconvensional method (AICM). DGE‐BHBTMBP/DDS curing system was investigated the curing behavior by means of differential scanning calorimetry (DSC) during isothermal and nonisothermal processes. Only one exothermal peak appeared in isothermal DSC curves. A variation of the effective activation energy with the extent of conversion was obtained by AICM. Three different curing stages were confirmed. In the initial curing stage, the value of Ea is dramatically decreased from ~90 to ~20 kJ/mol in the conversion region 0–0.2 for the formation of LC phase. In the middle stage, the value of Ea keeps about ~80 kJ/mol for cooperative effect of reaction mechanism and diffusion control. In the final stage, a significant increase of Ea from 84 to 136 kJ/mol could be caused by the mobility of longer polymer chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3922–3928, 2007  相似文献   

12.
Curing kinetics of diglycidyl ether of bisphenol-A (DGEBA) in the presence of novel silicon containing amide-amines were investigated by the dynamic differential scanning calorimetry. Silicon containing amide-amines were prepared by reacting 2.5 moles of 4,4'-diaminodiphenyl ether (E)/4,4'-diaminodiphenyl methane (M)/3,3'-diaminodiphenyl sulfone (mS)/bis(m-aminophenyl) methyl phosphine oxide (B) with one mole of bis(4-chlorobenzoyl) dimethyl silane. The multiple heating rate method (5, 10, 15 and 20°C min-1) was used to study the curing kinetics of epoxy resins in the presence of stoichiometric amounts of amide-amines having molecular masses in the range of 660 to 760 g mol-1. The peak exotherm temperature depends on the heating rate as well as on the structure of amide-amines. Activation energy of curing reaction as determined in accordance to the Ozawa's method was found to be dependent on the structure of amine. The thermal stability of the isothermally cured resins was also evaluated using dynamic thermogravimetry in a nitrogen atmosphere. The char yield was the highest in case of resins cured with amide-amines having both phosphorus and silicon atoms. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A systemic study of the impact of aromatic substitution on the reaction rate and network properties of the isomers of a tetraglycidylaniline triphenyl ether epoxy resin cured with anhydride hardeners is presented here. The epoxy resins synthesized in this work were based upon N,N,N,N‐tetraglycidyl bis(aminophenoxy)benzene (TGAPB), where the glycidyl aniline and ether groups change from being all meta (133 TGAPB), to meta and para (134 TGAPB), and finally to an all para substituted epoxy resin (144 TGAPB). Increasing para substitution increased reaction rate, promoted the onset of vitrification and increased epoxide conversion. Thermal properties such as glass transition temperatures (Tg) and coefficients of thermal expansion (CTE) both increased consistently with increasing para substitution, although thermal stability as measured via thermogravimetric analysis decreased. Mechanical properties also varied systematically with flexural strength and ductility increasing with increased para substitution, while the modulus decreased. Indeed, the ductility almost doubled, as measured by the work of fracture and displacement at failure highlighting the importance of substitution on properties.  相似文献   

14.
The synthesis of an aromatic ester based liquid crystalline epoxy resin (LCE) with a substituent in the mesogenic central group is described. Chlorine and methyl groups were introduced as substituents. The curing behaviors of three epoxy resins were investigated using diaminodiphenyl ester as the curing agent. The curing rate and heat of curing of LCE were measured with dynamic and isothermal DSC. The chlorine substituent accelerated the curing of LCE, while the methyl substituent decelerated the curing of LCE. The heat of curing of substituted LCE was diminished compared to LCE with no substituent. Glass transition temperature and elastic modulus of LCE decreased with increasing the size of the substituent. Three liquid crystalline epoxy resins based on aromatic ester mesogenic groups formed a liquid crystalline phase after curing, and the liquid crystalline phase was stable up to the decomposition temperature. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 911–917, 1998  相似文献   

15.
The electrical properties and dispersion of vapor‐grown carbon nanofibers (VGCNF) and multiwalled carbon nanotubes (MWCNT)—epoxy resin composites are studied and compared. A blender was used to disperse the nanofillers within the matrix, producing samples with concentrations of 0.1, 0.5, and 1.0 wt % for both nanofillers, besides the neat sample. The dispersion of the nanofillers was qualitatively analyzed using scanning electron microscopy, transmission optical microscopy, and grayscale analysis. The electrical conductivity and the dielectric constant were evaluated. The percolation threshold of MWCNT epoxy composites is lower than 0.1 wt % while for VGCNF lies between 0.1 and 0.5 wt %. The difference on the dispersion ability of the two nanofillers is due to their intrinsic characteristics. Celzard's theory is suitable to calculate the percolation threshold bounds for the VGCNF composites but not for the MWCNT composites, indicating that intrinsic characteristics of the nanofillers beyond the aspect ratio are determinant for the MWCNT composites electrical conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

16.
Mechanical properties and tribological behavior of epoxy resin (EP) and EP nanocomposites containing different shape nanofillers, such as spherical silica (SiO2), layered organo‐modified montmorillonite (oMMT) and oMMT‐SiO2 composites, were investigated. The SiO2‐oMMT composites were prepared by in situ deposition method and coupling agent modification, and transmission electron microscopy (TEM) analysis shows that spherical SiO2 is self‐assembled on the surface of oMMT, which forms a novel layered‐spherical nanostructure. The mechanical properties test results show that oMMT obviously improves the strength of EP and SiO2 enhances its toughness, but oMMT‐SiO2 exhibits a synergistic effect on toughening and reinforcing EP simultaneously. A pin‐on‐disc rig was used to test friction and wear loss of pure EP and EP nanocomposites. The tribological test results prove that these nanofillers with different shapes play different roles for improving the wear resistance of EP nanocomposites. Morphologies of the worn surfaces were studied further by scanning electron microscopy (SEM) observations, and it was clarified that the EP and EP nanocomposites undergo similar wear mechanisms. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The curing reaction and kinetics of o‐cresol formaldehyde epoxy resin (o‐CFER) with polyhedral oligomeric silsesquioxane of N‐aminoethyl‐γ‐amino propyl group (AEAP‐POSS) were investigated by differential scanning calorimetry (DSC). The thermal, mechanical, and dielectric properties of o‐CFER/AEAP‐POSS nanocomposites were investigated with thermogravimetric analysis (TGA), torsional braid analysis (TBA), tensile tester, impact tester, and electric analyzer, respectively. The results show that the activation energy (E) of curing reaction is 58.08 kJ/mol, and the curing reaction well followed the ?esták‐Berggren (S‐B) autocatalytic model. The glass transition temperature (Tg) increases with the increase in AEAP‐POSS content, and reaches the maximum, 107°C, when the molar ratio (Ns) of amino group to epoxy group is 0.5. The nanocomposites containing a higher percentage of AEAP‐POSS exhibited a higher thermostability. The AEAP‐POSS can effectively increase the mechanical properties of epoxy resin, and the tensile and impact strengths are 2.84 MPa and 143.25 kJ m?2, respectively, when Ns is 0.5. The dielectric constant (ε), dielectric loss factor (tan δ), volume resistivity (ρv), and surface resistivity (ρs) are 4.98, 3.11 × 10?4, 3.17 × 1012 Ω cm3, and 1.41 × 1012 Ω cm2, respectively, similarly at Ns 0.5. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The curing characteristics of a brominated epoxy resin/dicyandiamide (DICY) system filled with silane-treated glass beads are studied using isothermal differential scanning calorimetry (DSC). Three different silane coupling agents, N-(2-aminoethyl)-3-aminopropyl-trimethoxysilane, N-[2-(vinylbenzylamino)-ethyl]-3-aminopropyl-trimethoxysilane, and 3-glycidoxypropyl-trimethoxysilane, are applied. It is found that the reaction heats of the epoxy system are little affected by the curing temperature and the untreated glass fillers, but changed with the addition of silane-coated glass beads. The effect of glass beads on the curing reaction is more significant at the low curing temperature and conversion. The silane treatment results in changes in Tg, activation energy, reaction heat, reaction rate, and reaction order. Three silanes respond differently because of their differences in the activated reaction with the matrix system. Regardless of the various curing mechanisms involved, a simple kinetic expression can describe the curing extent at 170 and 180°C with a good accuracy for all systems studied. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2063–2071, 1997  相似文献   

19.
The flame‐retarded epoxy resin with improved thermal properties based on environmentally friendly flame retardants is vital for industrial application. Hereby, a novel reactive‐type halogen‐free flame retardant, 10‐(3‐(4‐hydroxy phenyl)‐3,4‐dihydro‐2H‐benzo[e] [1,3] oxazin‐4‐yl)‐5H‐phenophosphazinine 10‐oxide (DHA‐B) was synthesized via a two‐step reaction route. Its structure was characterized using 1H, 13C, and 31P NMR and HRMS spectra. For 4,4′‐diaminodipheny ethane (DDM) and diglycidyl ether of bisphenol A (DGEBA)‐cured systems, the epoxy resin with only 2 wt% loading of DHA‐B passed V‐0 rating of UL‐94 test. Significantly, its glass transition temperature (Tg) and initial decomposition temperature (T5%) were as high as 169.6°C and 359.6°C, respectively, which were even higher than those of the corresponding original epoxy resin. Besides, DHA‐B decreased the combustion intensity during combustion. The analysis of residues after combustion suggested that DHA‐B played an important role in the condensed phase.  相似文献   

20.
A phosphorus-nitrogen reactive flame retardant curing agent poly-(isophorondiamine spirocyclic pentaerythritol bisphosphonate) (PIPSPB) was synthesized. The chemical structure of the obtained compound was identified by FTIR, 1HNMR, and mass spectroscopies. Different proportions of DDS and PIPSPB were compounded as the curing agents to prepare a series of flame retardant epoxy resins with different phosphorus contents. The curing behavior of E-44/PIPSPB?+?DDS system was studied by DSC. A series of tests were conducted to characterize E-44/PIPSPB?+?DDS thermosetting system’s performance. The result demonstrates that the residual carbon content of EP/PIPSPB?+?DDS system is obviously higher than that of EP/DDS system after 500?°C with the increase of phosphorus content in the system, and the heat release rate of the system during combustion is significantly reduced. The generated phosphorus-containing carbon layer is obviously foamed, which shows that the flame retardancy of the system is the result of the combined action of condensed phase and gas phase. When the phosphorus content is 1.77wt%, EP-3 successfully passed UL94 V-0 flammability rating, the LOI value was as high as 29%, the impact strength and tensile strength of it were 6.08KJ/m2 and 49.10MPa respectively, the adhesive strength could reach 13.89?MPa, the system presents a good overall performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号