首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sol-gel prepared titania (TiO2) has recently been demonstrated with a promising bioactivity [1]. It forms a chemical bond with the living bone in the body, although the bonding is not very strong. The present study is intended to improve the bone-bonding ability of the titania gel. The goal is achieved by impregnating the titania with hydroxyapatite (Ca10(PO4)6(OH)2). The processing route includes the following steps: (1) the titania sol solution was prepared; (2) the solution was mixed with fine hydroxyapatite (HA) powders; (3) the mixture was used to produce a coating on a commercial pure titanium (c.p. Ti) or Ti6A14V plate by a dip coating technique; (4) the coating was fired at 400–600°C. The resulting coating is a composite consisting of hydroxyapatite embedded in the matrix of the titania gel. Such HA-TiO2 composite coating is capable of inducing the hydroxyapatite precipitation from a simulated body fluid. When implanted in femurs of goat, the composite coating shows a bonding with bone. Its bone-bonding strength is twice as high as that of the pure titania gel coating. The results indicate that impregnating with hydroxyapatite is a promising way to increase the bioactivity of the titania gel.  相似文献   

2.
Sol–gel coating of metal oxides on polymer substrates is a useful process to fabricate various organic–inorganic hybrid materials under mild conditions. However, this process is hardly applicable to pristine polyimide (PI) films because their surfaces do not display effective functional groups for metal oxide coatings. In this study, we firstly examined direct sol–gel coating of titania thin layers on unmodified PI film surfaces. The results confirmed homogeneous, ultrathin titania layer coating and showed that the thickness and microscopic morphology of the titania layers were affected by titanium alkoxide concentrations in the spin coating solutions. We next investigated titania layer coating on surface-modified PI films that prepared using alkaline hydrolysis, which generated carboxylic acid groups on the film surfaces. Optimal hydrolysis time was determined using FT-IR spectroscopy and contact angle measurements. After sol–gel titania coating on the hydrolyzed PI film surfaces, the Scotch tape test was conducted to evaluate adhesion strength between the titania layers and PI film surfaces. Morphological observations of the sample surfaces after the tests clearly showed that surface modification of PI films increased titania layer adhesions. Effect of hydrothermal treatments on film formability and adhesion strength between titania-PI film interfaces was also evaluated.  相似文献   

3.
In sol–gel processing, porous ceramic membranes can be prepared by sol-coating porous substrates and drying for gelling, followed by a firing process. Ceramic membranes prepared by sol–gel processing can be categorized into amorphous materials such as silica, and crystalline materials such as alumina and titania. Amorphous silica networks, which can be prepared by the polymeric sol route, have ultra-microporous pores that allow small molecules such as helium and hydrogen to permeate. On the other hand, crystalline materials, which are mostly prepared by the colloidal sol route, have nano-sized pores in the range of one to several nanometers. In this article, sol–gel derived SiO2 and TiO2 membranes with controlled pore sizes in the range of sub-nano to nanometers will be reviewed with respect to membrane preparation and to their application in the separation of the gas and liquid phases. Ceramic membranes with high performance can be obtained by precise control of membrane structures (pore size, pore size distribution, thickness, pore shape, etc.) and membrane materials (SiO2, TiO2, composite oxide, hybrid materials, etc.). Nano/subnano-tuning of porous ceramic membranes is quite important for the improvement of membrane permeability and selectivity.  相似文献   

4.
Poly(methylmethacrylate)/silica/titania films were prepared via a nonaqueous sol–gel route at ambient temperature, followed by spin-coating and multistep baking. The acrylic monomers used were methyl methacrylate (MMA) and 3-(trimethoxysilyl)propyl methacrylate (MSMA). Silicic acid and titanium(IV) chloride were used as the precursors of the inorganic component. FTIR results indicated the successful bonding between TiO2 and SiO2. TEM images suggested the silica/titania particles were well dispersed in the Poly(methyl methacrylate) (PMMA) matrix with the particles size smaller than 40 nm in our study. The refractive index and extinction coefficient were also studied. The refractive index of the hybrid increased with increasing the titania content, and the hybrid films showed high optical transparency in visible region.  相似文献   

5.
Hierarchical‐structured nanotubular silica/titania hybrids incorporated with particle‐size‐controllable ultrafine rutile titania nanocrystallites were realized by deposition of ultrathin titania sandwiched silica gel films onto each nanofiber of natural cellulose substances (e.g., common commercial filter paper) and subsequent flame burning in air. The rapid flame burning transforms the initially amorphous titania into rutile phase titania, and the silica gel films suppress the crystallite growth of rutile titania, thereby achieving nano‐precise size regulation of ultrafine rutile titania nanocrystallites densely embedded in the silica films of the nanotubes. The average diameters of these nanocrystallites are adjustable in a range of approximately 3.3–16.0 nm by a crystallite size increment rate of about 2.4 nm per titania deposition cycle. The silica films transfer the electrons activated by crystalline titania and generate catalytic reactive species at the outer surface. The size‐tuned ultrafine rutile titania nanocrystallites distributed in the unique hierarchical networks significantly improve the photocatalytic performance of the rutile phase titania, thereby enabling a highly efficient photocatalytic degradation of the methylene blue dye under ultraviolet light irradiation, which is even superior to the pure anatase‐titania‐based materials. The facile stepwise size control of the rutile titania crystallites described here opens an effective pathway for the design and preparation of fine‐nanostructured rutile phase titania materials to explore potential applications.  相似文献   

6.
IntroductionTitanium dioxide with the rutile or the anatasestructure as,in principle,a white pigmentis widelyused as paints and plastic additives because of itshigh refractive index,oil adsorption,chemical orthermal stability[1— 4 ] .The most common manu- fac-ture of this material is based on the digestion of theore ilmenite(Fe O· Ti O) with sulfuric acid,fol-lowed by hydrolyzing the solution of titanium ionsand the calcination of the hydrous titanium ox-ides[5] .Another industrial prepara…  相似文献   

7.
Wu JH  Li XS  Zhao Y  Zhang W  Guo L  Feng YQ 《Journal of chromatography. A》2011,1218(20):2944-2953
A novel core-shell composite (SiO(2)-nLPD), consisting of micrometer-sized silica spheres as a core and nanometer titania particles as a surface coating, was prepared by liquid phase deposition (LPD). Here, we show the resulting core-shell composite to have better efficient and selective enrichment for mono- and multi-phosphopeptides than commercially available TiO(2) spheres without any enhancer. The material exhibited favorable characteristics for HPLC, which include narrow pore size distribution, high surface area and pore volume. We also show that the core-shell composite can efficiently separate adenosine phosphate compounds due to the Lewis acid-base interaction between titania and phosphate group when used as HPLC packings. After coating the silica sphere with titania by LPD, the silanol of silica spheres will be shielded and that the stationary phase, C(18) bonded SiO(2)-3LPD, could be used under extreme pH condition.  相似文献   

8.
Patterning of sol gel based silica and silica–titania films has been developed at room temperature by soft lithographic technique. Corresponding metal alkoxides have been utilized for the preparation of precursor sols. Elastomeric stamps of polydimethylsiloxane (PDMS) are used to emboss patterns of a master grating on the as-prepared silica and silica–titania films obtained by sol gel process. Pressure-less capillary force lithography has been used to fabricate both 1-D and 2-D ordered structures of simple stripe patterns. A modified solvent assisted lithography and micro-molding in capillaries yielded stable and high fidelity 1-D structures for silica and silica–titania films over a large area.  相似文献   

9.
Several series of pyrocarbon-mineral adsorbents (carbosils) were studied using the nitrogen adsorption method to compute structural and energetic parameters within the scope of overall adsorption isotherm approximation applying a regularization procedure with consideration for surface heterogeneity. A portion of pyrocarbon deposits (graphene clusters) fills mesopores of the oxide supports, but another portion represents relatively large nonporous pyrocarbon globules formed on the outer surfaces of the oxide matrices. Contributions of these two types of pyrocarbon deposits depend on the nature of oxide matrices and carbonized precursors. The characteristics of pyrocarbon formed on the silica (silica gel, fumed silica) surfaces differ from those for deposits prepared on the surfaces of titania/silica and alumina/silica or by the pyrolysis of metal acetylacetonates (Zr(AcAc)(4), TiO(AcAc)(2), Ni(AcAc)(2), Zn(AcAc)(2), Cr(AcAc)(3), Co(AcAc)(2)) on mesoporous silica gel. The structural and energetic characteristics estimated using the adsorption method with consideration for the adsorbent heterogeneity are fruitful for comparative analysis of the (1)H NMR spectra of water adsorbed on carbosils from the gas phase or unfrozen in the aqueous suspensions at T < 273 K. Copyright 2001 Academic Press.  相似文献   

10.
A sol–gel titania poly(tetrahydrofuran) (poly-THF) coating was developed for capillary microextraction hyphenated on-line with high-performance liquid chromatography (HPLC). Poly-THF was covalently bonded to the sol–gel titania network which, in turn, became chemically anchored to the inner surface of a 0.25 mm I.D. fused silica capillary. For sample preconcentration, a 38-cm segment of the sol–gel titania poly-THF coated capillary was installed on an HPLC injection port as a sampling loop. Aqueous samples containing a variety of analytes were passed through the capillary and, during this process, the analytes were extracted by the sol–gel titania poly-THF coating on the inner surface of the capillary. Using isocratic and gradient elution with acetonitrile/water mobile phases, the extracted analytes were desorbed into the on-line coupled HPLC column for separation and UV detection. The sol–gel titania poly-THF coating was especially efficient in extracting polar analytes, such as underivatized phenols, alcohols, amines, and aromatic carboxylic acids. In addition, this coating was capable of extracting moderately polar and nonpolar analytes, such as ketones and polycyclic aromatic hydrocarbons. The sol–gel titania poly-THF coated capillary was also able to extract polypeptides at pH values near their respective isoelectric points. Extraction of these compounds can be important for environmental and biomedical applications. The observed extraction behavior can be attributed to the polar and nonpolar moieties in the poly-THF structure. This coating was found to be stable under extremely low and high pH conditions—even after 18 h of exposure to 1 M HCl (pH ≈0.0) and 1 M NaOH (pH ≈14.0).  相似文献   

11.
The nanocomposite of the (hydroxypropyl)cellulose–titania hybrid was prepared using the (hydroxypropyl)cellulose (HPC) and (tetra‐isopropyl)orthotitanate (TIPT) modified by the methacrylic acid (MAA) as a sol–gel precursor. The Raman investigations of the TIPT with MAA mixtures revealed that these mixtures formed an intermolecular complex determined by the non‐hydrolytic condensation of the constituents. In spite of this, the MAA/TIPT precursor can be used as a solvent for the HPC. The high viscosity of the homogenous liquid of HPC in the TIPT/MAA system was obtained and the sol–gel process under an influence of the moisture from the air could be conducted. The Raman investigations of HPC–titania hybrid showed octahedrally coordinated titania atoms [TiO6] embodied in the HPC environment. Although the chelating bond between the octahedrally coordinated titania [TiO6] and the MAA still occurred. The nanosize properties of TiO2 prepared by calcinations of HPC–titania hybrids were studied by the Raman spectroscopy, X‐ray investigations and the scanning electron microscopy (SEM). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
P(EMA-co-HEA)/SiO2 nanocomposites with 0, 15 and 30 wt% of silica were obtained by copolymerization of ethyl methacrylate, EMA, and hydroxyethyl acrylate, HEA, during the simultaneous acid-catalyzed sol–gel polymerization of tetraethoxysilane, TEOS. A surface modification treatment was applied in order to reduce the induction time for hydroxyapatite (HAp) nucleation, combining a previous NaOH attack to increase the number of surface nucleating sites, and an alternate soaking process in Ca and P solutions to form apatite precursors, prior to the immersion in a simulated body fluid (SBF). The NaOH treatment was not effective by itself in shortening the HAp induction time. It introduced sodium carboxylates in the copolymer but hydrolyzed the silica network excessively, thus reducing the surface nucleating potential of its boundary silanols. Therefore, bioactivity was only due to the surface carboxylate groups of the organic phase. Maybe a controlled dissolution extent of the silica network so as to improve bioactivity could be attained by reducing the duration of the NaOH-treatment. This would be interesting in the hybrid with 30 wt% of silica, because its dense silica network is not able to hydrolyze in SBF without any previous treatment, whereas the silica network in the hybrid with 15 wt% of silica hydrolyzes at the surface promoting the deposition of HAp. The CaP treatment was able to coat the surfaces of the samples with a calcium phosphate layer within minutes. This amorphous calcium phosphate acted as HAp precursor, skipping the induction period in SBF.  相似文献   

13.
Reactions of aquo-, hydroxo- and acido-complexes with silica gel surfaces can be compared and illustrated by means of thin-layer chromatography. In the case of non-hydrolyzing cations (K+), these reactions are ion-exchange reactions, and in the case of hydrolyzing cations (Al3+), they are adsorption processes with hydroxo-complexes. Formation of acido-complexes with high stability suppresses cation hydrolysis in aqueous solutions and—in consequence—adsorption on silica gel surfaces. Chromatograms on silica gel therefore also illustrate reactions in solutions.  相似文献   

14.
采用"接出(grafting from)"方式,在溶液聚合体系中将苯乙烯(St)接枝聚合在微米级硅胶表面,制备了接枝微粒PSt/SiO2;使用新型氯甲基化试剂1,4-二氯甲氧基丁烷,对接枝在硅胶表面的聚苯乙烯进行了氯甲基化(CM)反应,制得了氯甲基聚苯乙烯/硅胶(CMPS/SiO2)复合微粒.采用热重分析(TG)测定了PSt/SiO2的接枝度,并使用扫描电子显微镜(SEM)观察了其形貌;通过红外光谱法(FTIR)与佛尔哈德分析法表征了CMPS/SiO2的化学结构与组成.重点考察了各种因素对PSt/SiO2氯甲基化反应过程的影响规律.研究结果表明,CMPS/SiO2的制备不仅具有绿色环保的特点,而且反应容易控制.反应时间、溶剂种类与用量、催化剂种类与用量及氯甲基化试剂的用量等因素均会对该复合微粒的制备产生影响,如影响CMPS/SiO2的氯甲基化程度;抑制或促进已接枝的PSt大分子链之间通过Friedel-Crafts反应发生交联.若选用SnCl4为催化剂,以CH2Cl2为溶剂,在室温下反应10 h左右,可制得氯含量接近16 wt%(以接枝的PSt为基准计算)的CMPS/SiO2.  相似文献   

15.
Pyrolysis of mixed titanium and silicon metal halides produces a commercial glass (7.4% TiO2) with ultra-low thermal expansion that is essentially zero over the temperature range of 0 to 300°C. A colloidal particulate gel process involving potassium silicate, titania sol and formamide gel reagent was found to produce glass compositions with similar low expansion behavior. Due to the strongly basic nature of the precursor solutions, special titania sols had to be prepared that were stable in these alkali silicate solutions. The preferred TiO2 sols were those containing quaternary ammonium stabilizing counter-ions. These sols served not only as the source of homogeneously distributed titania, but they may also serve as nucleating species that contribute to particle growth and pore size control of the gel network. The large pore (0.3 µm) TiO2/SiO2 gel structures were easily dealkalized, dried and sintered to uncracked glass shapes. Plates up to 9.5 cm×6.6 cm× 0.5 cm thick and some intricate cast shapes were produced and their glass properties evaluated.  相似文献   

16.
A previously proposed method for preparing monodispersed titania particles was extended to preparation of titania-coated silica spherical particles. The core silica particles with an average size of 264 nm were prepared with Stöber method. The titania-coating was performed in ethanol/acetonitrile solvent in the presence of silica particles by a sol-gel method with the use of titanium tetraisopropoxide (TTIP) and methylamine (MA) catalyst. Average size of the silica-titania particles decreased from 457 to 292 nm with an increase in concentration of silica particles. Coefficient of variation for the particle size was less than 5%. Colloidal crystals could be fabricated with a dip-coating technique and a sedimentation process, respectively. Measurements of reflectance revealed peaks based on the Bragg diffraction. Those peaks red-shifted with an increase in titania shell thickness because of a high refractive index of titania. Annealing at high temperature transformed crystal structure of titania shell from amorphous to anatase (500°C) and rutile (1000°C), which led to red-shift of reflection peak because of an increase in refractive index of titania due to the crystallization.  相似文献   

17.
Composites based on polydimethylsiloxane incorporating silica and titania were prepared by mixing polydimethylsiloxane with proper oxides precursors, tetraethyl-orthosilicate and tetrabutyl-orthotitanate. In the presence of environmental humidity and in acid catalysis, hydrolysis/condensation processes take place with formation of oxides and concomitantly polymer crosslinking. Partial replacement of SiO2 in a polydimethylsiloxane/silica composite with titania (both generated in situ by sol–gel process) affects surface hydrophilicity (evaluated by dynamic contact angle), water vapor sorption ability (determined by dynamic vapor sorption) and thermal stability. The dielectric properties are also controlled by composition.  相似文献   

18.
Responsive copolymers have been prepared by grafting onto a poly(acrylamide-co-sodium acrylate) backbone [PAM-co-PANa] poly(N-isopropylacrylamide) stickers [PNIPA] characterized by a lower critical solution temperature (LCST) in water. From adsorption isotherms and DSC studies performed on PNIPA/silica mixtures, it was shown that PNIPA chains irreversibly interact with silica particles and that at low coverage they partially lose their responsiveness with temperature. When PNIPA is grafted onto a PAM-co-PANa backbone, which has no specific attraction to silica surfaces (only electrostatic repulsions), their binding process remains very similar to the one analyzed with PNIPA chains alone. Above critical copolymer and silica concentrations (Cp congruent with 1 g/L and CSi congruent with 30 g/L), hybrid networks can be formed following the rules of percolation theory. The viscoelastic properties of these networks are controlled by the concentration of inorganic cross links and the fraction of PNIPA grafts participating in bridges between particles, the others being involved in inelastic loops or pendant chains. For all of the mixtures investigated, an optimum weight ratio of RSi/PNIPA = 10-15 was found for the viscoelastic properties, in agreement with the saturation of silica beads by the copolymer. Because of the responsive behavior of PNIPA in aqueous solutions, graft copolymers are able to self-assemble with temperature, giving rise to a sol/gel transition upon heating. In the presence of added silica, hybrid aggregates (silica/PNIPA) coexist at high temperature with organic ones (PNIPA/PNIPA) with synergistic or antagonistic effects on the elastic properties depending on the proportion of PNIPA grafts per silica particle.  相似文献   

19.
建立了一种新的离子表面印迹(IIP)方法. 使用偶联剂γ-氨丙基三甲氧基硅烷(AMPS)对微米级硅胶微粒进行表面改性, 制得表面含有氨基的改性硅胶AMPS-SiO2. 凭借离子交换作用, 阳离子单体甲基丙烯酰氧乙基三甲基氯化铵(DMC)结合在模板离子磷酸根周围; 改性硅胶AMPS-SiO2表面的氨基与溶液中的过硫酸盐构成氧化还原引发体系, 使DMC及交联剂N,N'-亚甲基双丙烯酰胺(MBA)在硅胶微粒表面发生接枝交联聚合, 从而实现了磷酸根离子的表面印迹, 制得了阴离子表面印迹材料IIP-PDMC/SiO2. 采用静态与动态两种方法, 考察研究了IIP-PDMC/SiO2对PO43-离子的识别特性与结合性能. 研究结果表明, 离子表面印迹材料IIP-PDMC/SiO2对PO43-离子具有特异的识别选择性与优良的结合亲和性, 相对于对比离子高锰酸根离子, IIP-PDMC/SiO2对PO43-离子的识别选择性系数为9.58.  相似文献   

20.
Adsorbents synthesized by grafting of titania onto mesoporous silica gel surfaces at different temperatures were studied by means of nitrogen adsorption–desorption and water desorption. The pore size distribution f(Rp) of titania/silica gel depends on the titania concentration (CTiO2) and the temperature of titania synthesis. Nonuniformity of TiO2 phase is maximal at a low CTiO2 value (3.2 wt.% anatase deposited at 473 K), and two peaks of the fractal dimension distribution f(D) are observed at such a concentration of titania, but at larger CTiO2 values, only one f(D) peak is seen. More ordered filling of pores and adsorption sites by nitrogen, reflecting in the shape of adsorption energy distributions f(E) at different pressures of adsorbate, is observed for adsorbent with titania (rutile+anatase) grafted on silica gel at a higher temperature (673 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号