首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We revisit the notion of structural similarity along a reaction path within the context of a generalized electronic diabatic (GED) molecular model. In this approach, a reaction involving two closed‐shell stable species is described as the evolution of a quantum state that superimposes at least three diabatic electronic species (reactant, product, and an open‐shell transition state) coupled by an external electromagnetic field. Reactant and product amplitudes in this general state are also modulated by changing the geometry of a system of classical positive charges interacting with the electrons. By mapping these amplitudes over nuclear configurational space, we can follow the total quantum state along a reaction coordinate and establish its similarity to each of the diabatic species. As a result, chemical processes, and useful notions such as those of energy barriers and the Hammond postulate, emerge as consequence of Franck–Condon‐like transitions between quantum states. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

2.
We describe the chemical change between two diabatic closed-shell states as an electronic transition mediated by two factors: a bound diabatic transition state and the electromagnetic field. Using a three-state model for bond breaking, we compute the amplitudes of the total quantum state on the diabatic reactant, product, and transition states as a function of the external field. Changes in the total electronic state appear as sharp transitions between diabatic basis functions for particular configurations of the set of external positive charges. Depending on the diabatic states and the external field, the model predicts the possible occurrence of energy barriers for breaking or forming covalent bonds.  相似文献   

3.
戴东旭  杨学明 《中国科学B辑》2009,39(10):1089-1101
化学反应过渡态决定了包括反应速率和微观反应动力学在内的化学反应的基本特性,而无论是从理论还是实验上研究和观测化学反应过渡态都是极具挑战性的课题.近年来,我国科学家们利用交叉分子束-里德堡氢原子飞行时间谱仪,结合高精度的量子动力学计算,对H+H2和F+H2这两个教科书式的典型反应体系进行了全量子态分辨的反应动力学研究,从中得出了关于这两个反应体系的过渡态的结构和动力学性质的结论性的研究成果.  相似文献   

4.
5.
A quantum approach to chemical processes is developed. The chemical interconversion is described as an electronic process. The reaction corresponds to histories involving quantum states belonging to different stationary molecular Hamiltonians. The system may be embedded in a weak (thermal) and/or external electromagnetic field. The electromagnetic transverse fields lead to transition moments yielding finite probability amplitudes for the system to change from one quantum state to another. Bottleneck subspaces (transition states) are defined; they mediate the interconversions in generic unimolecular and bimolecular processes. Active precursor and successor complexes are introduced to help bridge reactant and product electronic states. The stationary states are modeled with Born-Oppenheimer Hamiltonians. At a qualitative level, the theory is general. The rate, measured as a time derivative of product concentration, is expressed in terms of concentrations of active precursor and successor complexes. The kinetic coefficients are given in terms of quantum processes involving electronic bottleneck states. Stationary structures and vibrational zero-point energies characterizing the reactive CH3++H2 system are determined at a Hartree-Fock level of theory with 6-31++G** basis set. The vibrational levels are corrected with anharmonicity effects. The saddle point of index one for hydrogen scrambling reactions has been obtained and shown to be related to the CH5+ molecular complex together with the precursor and successor complexes geometries. The unusual properties of the system with respect to standard transition-state theory are fairly well described within this approach, in particular, isotope scrambling as well as photon emission during formation of the carbocation. The theory suggests that these types of reactions, which are found in outer space, may contribute to the scattering of the cosmic microwave background. © 1997 John Wiley & Sons, Inc.  相似文献   

6.
In linear control, balanced truncation is known as a powerful technique to reduce the state-space dimension of a system. Its basic principle is to identify a subspace of jointly easily controllable and observable states and then to restrict the dynamics to this subspace without changing the overall response of the system. This work deals with a first application of balanced truncation to the control of open quantum systems which are modeled by the Liouville-von Neumann equation within the Lindblad formalism. Generalization of the linear theory has been proposed to cope with the bilinear terms arising from the coupling between the control field and the quantum system. As an example we choose the dissipative quantum dynamics of a particle in an asymmetric double well potential driven by an external control field, monitoring population transfer between the potential wells as a control target. The accuracy of dimension reduction is investigated by comparing the populations obtained for the truncated system versus those for the original system. The dimension of the model system can be reduced very efficiently where the degree of reduction depends on temperature and relaxation rate.  相似文献   

7.
Dynamics of passage over a saddle is investigated for a quantum system under the effect of time-dependent external field (laser pulse). We utilize the recently developed theories of nonlinear dynamics in the saddle region, and extend them to incorporate both time-dependence of the external field and quantum mechanical effects of the system. Anharmonic couplings and laser fields with any functional form of time dependence are explicitly taken into account. As the theory is based on the Weyl expression of quantum mechanics, interpretation is facilitated by the classical phase space picture, while no "classical approximation" is involved. We introduce a quantum reactivity operator to extract the reactive part of the system. In a model system with an optimally controlled laser field for the reaction, it is found that the boundary of the reaction in the phase space, extracted by the reactivity operator, is modulated with time by the effect of the laser field, to "catch" the system excited in the reactant region, and then to "release" it into the product region. This method provides new insights in understanding the origin of optimal control of chemical reactions by laser fields.  相似文献   

8.
Understanding the state-resolved dynamics of elementary chemical reactions involving polyatomic molecules, such as the well-known reaction mechanism of nucleophilic bimolecular substitution (SN2), is one of the principal goals in chemistry. In this Review, the progress in the quantum mechanical treatment of SN2 reactions in the gas phase is reviewed. The potential energy profile of this class of reactions is characterized by two relatively deep wells, which correspond to pre- and post-reaction chargedipole complexes. As a consequence, the complex-forming reaction is dominated by Feshbach resonances. Calculations in the energetic continuum constitute a major challenge because the high density of resonance states imposes considerable requirements on the convergence and the energetic resolution of the scattering data. However, the effort is rewarding because new insights into the details of multimode quantum dynamics of elementary chemical reactions can be obtained.  相似文献   

9.
10.
Seeking an effective quantum control entails searching over a landscape defined as the objective as a functional of the control field. This paper considers the problem of driving a state-to-state transition in a finite level quantum system, and analyzes the local topology of the landscape of the final transition probability in terms of the variables specifying the control field. Numerical calculation of the eigenvalues of the Hessian of the transition probability with respect to the control field variables reveals systematic structure in the spectra reflecting the existence of a generic and simple control landscape topology. An illustration shows that the number of nonzero Hessian eigenvalues is determined by the number of quantum states in the system. The Hessian eigenvectors associated with its nonzero eigenvalues are shown to give insight into the cooperative roles of the control variables. The practical consequences of these findings for quantum control are discussed.  相似文献   

11.
We present a theory for rigorous quantum scattering calculations of probabilities for chemical reactions of atoms with diatomic molecules in the presence of an external electric field. The approach is based on the fully uncoupled basis set representation of the total wave function in the space-fixed coordinate frame, the Fock-Delves hyperspherical coordinates, and the adiabatic partitioning of the total Hamiltonian of the reactive system. The adiabatic channel wave functions are expanded in basis sets of hyperangular functions corresponding to different reaction arrangements, and the interactions with external fields are included in each chemical arrangement separately. We apply the theory to examine the effects of electric fields on the chemical reactions of LiF molecules with H atoms and HF molecules with Li atoms at low temperatures and show that electric fields may enhance the probability of chemical reactions and modify reactive scattering resonances by coupling the rotational states of the reactants. Our preliminary results suggest that chemical reactions of polar molecules at temperatures below 1 K can be selectively manipulated with dc electric fields and microwave laser radiation.  相似文献   

12.
化学反应过渡态结构对化学反应机理的研究有重要作用, 但实验上无法直接得到。近年来发展了一些量子化学和分子力学方法, 可以从理论上计算出过渡态结构, 本文对这些计算方法进行了详细介绍。  相似文献   

13.
采用密度泛函方法B3LYP/6-311+G(d, p)和耦合簇方法CCSD/6-311+G(d, p)研究了BH2+与H2O的气相离子-分子反应机理. 优化得到了反应途径中各驻点的几何构型, 并采用内禀反应坐标法进行追踪. 从量子拓扑学的角度, 讨论了在反应过程中各化学键的变化. 反应(I)经历了一个四元环过渡态, 找到了这个反应的能量过渡态和两个结构过渡态.  相似文献   

14.
基于半经典电子转移理论,结合量子化学计算,在HF/DZP水平上,研究外电场作用下平行的苯分子-苯正离子自由基体系(C6H4)2+的分子内电子转移问题.在给体和受体几何构型优化的基础上,用线性反应坐标确定电子转移过渡态,分别用两态变分方法和基于Koopmans定理的分子轨道跃迁能方法计算电子转移矩阵元VAB,讨论了VAB对给体和受体中心距d的指数衰减关系.取中心距为0.6nm,研究了外电场对反应热的影响,计算得到在不同外电场强度下分子内气相电子转移的速率常数k.  相似文献   

15.
16.
In the past decade, transition metal complexes have gained momentum as electron spin-based quantum bit (qubit) candidates due to their synthetic tunability and long achievable coherence times. The decoherence of magnetic quantum states imposes a limit on the use of these qubits for quantum information technologies, such as quantum computing, sensing, and communication. With rapid recent development in the field of molecular quantum information science, a variety of chemical design principles for prolonging coherence in molecular transition metal qubits have been proposed. Here the spin-spin, motional, and spin-phonon regimes of decoherence are delineated, outlining design principles for each. It is shown how dynamic ligand field models can provide insights into the intramolecular vibrational contributions in the spin-phonon decoherence regime. This minireview aims to inform the development of molecular quantum technologies tailored for different environments and conditions.  相似文献   

17.
A simple theoretical model is developed to predict the state-to-state dynamics of direct chemical reactions. Motivated by traditional ideas from transition state theory, expressions are derived for the reactive S matrix that may be computed using the local transition state dynamics. The key approximation involves the use of quantum bottleneck states to represent the near separable dynamics taking place near the transition state. Explicit expressions for the S matrix are obtained using a Franck-Condon treatment for the inelastic coupling between internal states of the collision complex. It is demonstrated that the energetic thresholds for various initial reagent states of the D+H(2) reaction can be understood in terms of our theory. Specifically, the helicity of the reagent states are found to correlate directly to the symmetry of the quantum bottleneck states, which thus possess very different thresholds. Furthermore, the rotational product state distributions for D+H(2) are found to be associated with interfering pathways through the quantum bottleneck states.  相似文献   

18.
Active site properties in some proteins can be affected by conformational fluctuations of neighbor residues, even when the latter are not involved directly in the binding process. A local environment thus appears to alter the relevant potential energy surface and its reaction paths. Here, some aspects of this phenomenon are simulated within a generalized electronic diabatic (GED) scheme to study the geometry and structural similarity for a class of two‐dimensional (2D) energy surfaces. The electronic quantum state is a linear superposition of diabatic basis functions, each of which is taken to represent a single (pure) electronic state for the isolated material system. Here, we describe a model reaction of isomerization by shifts in amplitudes for three diabatic species (reactant, product, and an open‐shell transition state) coupled in an external field. The “effective” 2D energy surface in the field is characterized in terms of critical points, and the amplitudes along the main reaction paths. A new feature is the introduction of a phase diagram where all possible potential‐energy‐surface topologies (consistent with three‐state systems in two linear coordinates) are matched with actual model parameters. By varying the coupling strengths between diabatic states, we classify regions of this phase diagram in terms of electronic and structural similarities; some regions comprise models whose reaction paths have geometries that belong to the catchment region of the reactant, yet are electronically akin to the diabatic transition state or product. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

19.
We investigated small helium clusters formation in nonequilibrium conditions using the non-Hermitian formalism. Helium is a simple enough system for analytical study while complicated enough to have a rich variety of quantum properties. In this article, we used a new formalism based on non-Hermitian quantum mechanics for describing the electronic excited states in clusters. This formalism enabled to estimate the decay time of excited states within a single scheme. Its implementation to helium shows the existence of new long-lived excited states in small helium clusters at the distance of 5.6 Bohr radii between atoms. Moreover, several helium excimers and exciplexes at the distances between helium atoms of 35.5, 22.8, 14.0, and 8.5 Bohr radii with the scaling factor of about 1.6 were found. It is related to the restructuring of the electronic structure caused by powerful external excitations. These results give a new insight on clustering processes providing more profound and complete understanding.  相似文献   

20.
王川  王晓晶  郭妍 《化学通报》2023,86(9):1097-1102
机械力化学作为一种无需溶剂的绿色化学技术得到广泛关注。然而,机械力化学反应机制需要从原子和分子尺度上深入理解力诱导的化学反应。在过去的20年中,量子化学模型方法在机械力化学机理研究中得到广泛应用,高精度量化计算可得到外力下变形分子的几何结构、能量、过渡态等诸多性质。本文介绍了目前机械力化学领域的主流量子化学模型的基本原理,同时也关注了这些模型方法在软件上的具体实现,并借助典型的案例阐述了量子化学模型在解释机械力化学机理中的作用与价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号